动态云数据中心流量优化的虚拟网络功能布局与迁移

Vincent Tran, Jingsong Sun, Bin Tang, Deng Pan
{"title":"动态云数据中心流量优化的虚拟网络功能布局与迁移","authors":"Vincent Tran, Jingsong Sun, Bin Tang, Deng Pan","doi":"10.1109/ipdps53621.2022.00094","DOIUrl":null,"url":null,"abstract":"We propose a new algorithmic framework for traffic-optimal virtual network function (VNF) placement and migration for policy-preserving data centers (PPDCs). As dynamic virtual machine (VM) traffic must traverse a sequence of VNFs in PPDCs, it generates more network traffic, consumes higher bandwidth, and causes additional traffic delays than a traditional data center. We design optimal, approximation, and heuristic traffic-aware VNF placement and migration algorithms to minimize the total network traffic in the PPDC. In particular, we propose the first traffic-aware constant-factor approximation algorithm for VNF placement, a Pareto-optimal solution for VNF migration, and a suite of efficient dynamic-programming (DP)-based heuristics that further improves the approximation solution. At the core of our framework are two new graph-theoretical problems that have not been studied. Using flow characteristics found in production data centers and realistic traffic patterns, we show that a) our VNF migration techniques are effective in mitigating dynamic traffic in PPDCs, reducing the total traffic cost by up to 73%, b) our VNF placement algorithms yield traffic costs 56% to 64% smaller than those by existing techniques, and c) our VNF migration algorithms outperform the state-of-the-art VM migration algorithms by up to 63% in reducing dynamic network traffic.","PeriodicalId":321801,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Traffic-Optimal Virtual Network Function Placement and Migration in Dynamic Cloud Data Centers\",\"authors\":\"Vincent Tran, Jingsong Sun, Bin Tang, Deng Pan\",\"doi\":\"10.1109/ipdps53621.2022.00094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new algorithmic framework for traffic-optimal virtual network function (VNF) placement and migration for policy-preserving data centers (PPDCs). As dynamic virtual machine (VM) traffic must traverse a sequence of VNFs in PPDCs, it generates more network traffic, consumes higher bandwidth, and causes additional traffic delays than a traditional data center. We design optimal, approximation, and heuristic traffic-aware VNF placement and migration algorithms to minimize the total network traffic in the PPDC. In particular, we propose the first traffic-aware constant-factor approximation algorithm for VNF placement, a Pareto-optimal solution for VNF migration, and a suite of efficient dynamic-programming (DP)-based heuristics that further improves the approximation solution. At the core of our framework are two new graph-theoretical problems that have not been studied. Using flow characteristics found in production data centers and realistic traffic patterns, we show that a) our VNF migration techniques are effective in mitigating dynamic traffic in PPDCs, reducing the total traffic cost by up to 73%, b) our VNF placement algorithms yield traffic costs 56% to 64% smaller than those by existing techniques, and c) our VNF migration algorithms outperform the state-of-the-art VM migration algorithms by up to 63% in reducing dynamic network traffic.\",\"PeriodicalId\":321801,\"journal\":{\"name\":\"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ipdps53621.2022.00094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipdps53621.2022.00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种新的算法框架,用于策略保留数据中心(ppdc)的流量最优虚拟网络功能(VNF)的放置和迁移。由于动态虚拟机(VM)流量必须遍历ppdc中的一系列VNFs,因此与传统数据中心相比,它会产生更多的网络流量,消耗更高的带宽,并导致额外的流量延迟。我们设计了最优、近似和启发式流量感知的VNF放置和迁移算法,以最小化PPDC中的总网络流量。特别是,我们提出了第一个交通感知的VNF放置的常因子近似算法,VNF迁移的帕雷托最优解,以及一套有效的基于动态规划(DP)的启发式算法,进一步改进了近似解。我们的框架的核心是两个尚未被研究的新的图论问题。利用生产数据中心的流量特征和现实的流量模式,我们表明:a)我们的VNF迁移技术在缓解ppdc中的动态流量方面是有效的,将总流量成本降低了73%;b)我们的VNF放置算法的流量成本比现有技术低56%至64%;c)我们的VNF迁移算法在减少动态网络流量方面比最先进的虚拟机迁移算法高出63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic-Optimal Virtual Network Function Placement and Migration in Dynamic Cloud Data Centers
We propose a new algorithmic framework for traffic-optimal virtual network function (VNF) placement and migration for policy-preserving data centers (PPDCs). As dynamic virtual machine (VM) traffic must traverse a sequence of VNFs in PPDCs, it generates more network traffic, consumes higher bandwidth, and causes additional traffic delays than a traditional data center. We design optimal, approximation, and heuristic traffic-aware VNF placement and migration algorithms to minimize the total network traffic in the PPDC. In particular, we propose the first traffic-aware constant-factor approximation algorithm for VNF placement, a Pareto-optimal solution for VNF migration, and a suite of efficient dynamic-programming (DP)-based heuristics that further improves the approximation solution. At the core of our framework are two new graph-theoretical problems that have not been studied. Using flow characteristics found in production data centers and realistic traffic patterns, we show that a) our VNF migration techniques are effective in mitigating dynamic traffic in PPDCs, reducing the total traffic cost by up to 73%, b) our VNF placement algorithms yield traffic costs 56% to 64% smaller than those by existing techniques, and c) our VNF migration algorithms outperform the state-of-the-art VM migration algorithms by up to 63% in reducing dynamic network traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信