基于粒子群优化的场感知分解机在网络广告点击率预测中的应用

M. R. Phangtriastu, S. M. Isa
{"title":"基于粒子群优化的场感知分解机在网络广告点击率预测中的应用","authors":"M. R. Phangtriastu, S. M. Isa","doi":"10.1109/CCOMS.2018.8463219","DOIUrl":null,"url":null,"abstract":"Online advertising industry is grow larger along with the increasing numbers of internet users. To make ads industry to be more efficient, prediction model for ads' click-through rate is needed. In this research, Field-aware Factorization Machine (FFM) is going to be optimized using Particle Swarm Optimization (PSO) on FFM parameters to increase the accuracy of the FFM. In this research, FFM and PSO-FFM is compared with accuracy and execution time. Our experimental results show PSO can increase FFM performance.","PeriodicalId":405664,"journal":{"name":"2018 3rd International Conference on Computer and Communication Systems (ICCCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing Field-Aware Factorization Machine with Particle Swarm Optimization on Online Ads Click-through Rate Prediction\",\"authors\":\"M. R. Phangtriastu, S. M. Isa\",\"doi\":\"10.1109/CCOMS.2018.8463219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online advertising industry is grow larger along with the increasing numbers of internet users. To make ads industry to be more efficient, prediction model for ads' click-through rate is needed. In this research, Field-aware Factorization Machine (FFM) is going to be optimized using Particle Swarm Optimization (PSO) on FFM parameters to increase the accuracy of the FFM. In this research, FFM and PSO-FFM is compared with accuracy and execution time. Our experimental results show PSO can increase FFM performance.\",\"PeriodicalId\":405664,\"journal\":{\"name\":\"2018 3rd International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCOMS.2018.8463219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCOMS.2018.8463219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着互联网用户的不断增加,网络广告行业也在不断发展壮大。为了提高广告行业的效率,广告点击率的预测模型是必不可少的。本研究将利用粒子群算法(PSO)对现场感知分解机(FFM)的参数进行优化,以提高FFM的精度。在本研究中,比较了FFM和PSO-FFM的准确率和执行时间。实验结果表明,粒子群算法可以提高FFM的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Field-Aware Factorization Machine with Particle Swarm Optimization on Online Ads Click-through Rate Prediction
Online advertising industry is grow larger along with the increasing numbers of internet users. To make ads industry to be more efficient, prediction model for ads' click-through rate is needed. In this research, Field-aware Factorization Machine (FFM) is going to be optimized using Particle Swarm Optimization (PSO) on FFM parameters to increase the accuracy of the FFM. In this research, FFM and PSO-FFM is compared with accuracy and execution time. Our experimental results show PSO can increase FFM performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信