RNAi技术在林木中的应用。

M. Fladung, H. Häggman, S. Sutela
{"title":"RNAi技术在林木中的应用。","authors":"M. Fladung, H. Häggman, S. Sutela","doi":"10.1079/9781789248890.0054","DOIUrl":null,"url":null,"abstract":"Abstract\n A diverse set of small RNAs is involved in the regulation of genome organization and gene expression in plants. These regulatory sRNAs play a central role for RNA in evolution and ontogeny in complex organisms, including forest tree species, providers of indispensable ecosystem services. RNA interference is a process that inhibits gene expression by double-stranded RNA and thus causes the degradation of target messenger RNA molecules. Targeted gene silencing by RNAi has been utilized in various crop plants in order to enhance their characteristics. For forest tree species, most of the successful RNAi modification has been conducted in poplar. Over the past 20 years, successful RNAi-mediated suppression of gene expression has been achieved with a variety of economically important traits. Moreover, the stability of RNAi-mediated transgene suppression has been confirmed in field-grown poplars. In this chapter, we describe examples of successful RNAi applications mainly in poplar but also provide some information about application of RNAi in pest control in forest tree species. Advantages and disadvantages of this technology with respect to the particular features of forest tree species will be discussed.","PeriodicalId":121833,"journal":{"name":"RNAi for plant improvement and protection","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of RNAi technology in forest trees.\",\"authors\":\"M. Fladung, H. Häggman, S. Sutela\",\"doi\":\"10.1079/9781789248890.0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract\\n A diverse set of small RNAs is involved in the regulation of genome organization and gene expression in plants. These regulatory sRNAs play a central role for RNA in evolution and ontogeny in complex organisms, including forest tree species, providers of indispensable ecosystem services. RNA interference is a process that inhibits gene expression by double-stranded RNA and thus causes the degradation of target messenger RNA molecules. Targeted gene silencing by RNAi has been utilized in various crop plants in order to enhance their characteristics. For forest tree species, most of the successful RNAi modification has been conducted in poplar. Over the past 20 years, successful RNAi-mediated suppression of gene expression has been achieved with a variety of economically important traits. Moreover, the stability of RNAi-mediated transgene suppression has been confirmed in field-grown poplars. In this chapter, we describe examples of successful RNAi applications mainly in poplar but also provide some information about application of RNAi in pest control in forest tree species. Advantages and disadvantages of this technology with respect to the particular features of forest tree species will be discussed.\",\"PeriodicalId\":121833,\"journal\":{\"name\":\"RNAi for plant improvement and protection\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNAi for plant improvement and protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1079/9781789248890.0054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNAi for plant improvement and protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1079/9781789248890.0054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多种小rna参与了植物基因组组织和基因表达的调控。这些调控RNA在复杂生物的进化和个体发育中发挥着核心作用,包括森林树种,提供不可或缺的生态系统服务。RNA干扰是通过双链RNA抑制基因表达,从而导致目标信使RNA分子降解的过程。RNAi靶向基因沉默已被广泛应用于多种作物中,以提高其特性。对于森林树种,大多数成功的RNAi修饰都是在杨树上进行的。在过去的20年里,rnai介导的基因表达抑制已经成功地实现了多种经济上重要的性状。此外,rnai介导的转基因抑制在大田杨树中的稳定性已得到证实。在本章中,我们主要描述了RNAi在杨树中的成功应用实例,同时也提供了RNAi在森林树种病虫害防治中的一些应用信息。针对森林树种的特点,将讨论该技术的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of RNAi technology in forest trees.
Abstract A diverse set of small RNAs is involved in the regulation of genome organization and gene expression in plants. These regulatory sRNAs play a central role for RNA in evolution and ontogeny in complex organisms, including forest tree species, providers of indispensable ecosystem services. RNA interference is a process that inhibits gene expression by double-stranded RNA and thus causes the degradation of target messenger RNA molecules. Targeted gene silencing by RNAi has been utilized in various crop plants in order to enhance their characteristics. For forest tree species, most of the successful RNAi modification has been conducted in poplar. Over the past 20 years, successful RNAi-mediated suppression of gene expression has been achieved with a variety of economically important traits. Moreover, the stability of RNAi-mediated transgene suppression has been confirmed in field-grown poplars. In this chapter, we describe examples of successful RNAi applications mainly in poplar but also provide some information about application of RNAi in pest control in forest tree species. Advantages and disadvantages of this technology with respect to the particular features of forest tree species will be discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信