非多元可压缩势流的激波极性

V. Elling
{"title":"非多元可压缩势流的激波极性","authors":"V. Elling","doi":"10.3934/cpaa.2022032","DOIUrl":null,"url":null,"abstract":"We consider compressible potential flow for general equations of state. Assuming hyperbolicity and convex equation of state, we prove that shock polars have a unique critical point (in each half), as well as a unique sonic point, with critical and strong shocks always on the subsonic side. We also show existence of normal and oblique shocks, as well as monotonicity of density, enthalpy, pressure along each half-polar, with Mach number monotone only along the subsonic part.","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shock polars for non-polytropic compressible potential flow\",\"authors\":\"V. Elling\",\"doi\":\"10.3934/cpaa.2022032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider compressible potential flow for general equations of state. Assuming hyperbolicity and convex equation of state, we prove that shock polars have a unique critical point (in each half), as well as a unique sonic point, with critical and strong shocks always on the subsonic side. We also show existence of normal and oblique shocks, as well as monotonicity of density, enthalpy, pressure along each half-polar, with Mach number monotone only along the subsonic part.\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure & Applied Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure & Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一般状态方程的可压缩势流。假设双曲状态方程和凸状态方程,我们证明激波极有一个唯一的临界点(在每半部分)和一个唯一的声波点,临界激波和强激波总是在亚音速一侧。我们还证明了正激波和斜激波的存在,以及密度、焓和压力沿每半极的单调性,马赫数仅沿亚音速部分单调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shock polars for non-polytropic compressible potential flow
We consider compressible potential flow for general equations of state. Assuming hyperbolicity and convex equation of state, we prove that shock polars have a unique critical point (in each half), as well as a unique sonic point, with critical and strong shocks always on the subsonic side. We also show existence of normal and oblique shocks, as well as monotonicity of density, enthalpy, pressure along each half-polar, with Mach number monotone only along the subsonic part.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信