加强雷达分析和解释

M. Angelini, G. Blasilli, S. Lenti, A. Palleschi, G. Santucci
{"title":"加强雷达分析和解释","authors":"M. Angelini, G. Blasilli, S. Lenti, A. Palleschi, G. Santucci","doi":"10.1109/VISUAL.2019.8933775","DOIUrl":null,"url":null,"abstract":"RadViz plots are commonly used to represent multidimensional data because they use the familiar notion of 2D points for encoding data elements, displaying the original data dimensions that act as springs for setting the x and y coordinates. However, this intuitive approach implies several drawbacks and produces misleading visualizations that can confuse the user, even while analyzing a single data point. The paper attacks this problem following the well known idea of changing the order of the dimensions and introducing ancillary visualizations to mitigate some of RadViz drawbacks. In particular, the paper defines the notion of point optimal disposition of the dimensions for a single data point, generalizes this concept to a set of data points, and proposes effective heuristics for dealing with the intractable problem of exploring all the $\\frac{{\\left( {n - 1} \\right)!}}{2}$ dispositions of the dimensions along the RadViz circumference. Additional views, visual quality metrics, and a circular grid superimposed on the RadViz complement the attribute reordering strategy and provide a better understanding of the actual plot of the data elements.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"77 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Towards Enhancing RadViz Analysis and Interpretation\",\"authors\":\"M. Angelini, G. Blasilli, S. Lenti, A. Palleschi, G. Santucci\",\"doi\":\"10.1109/VISUAL.2019.8933775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RadViz plots are commonly used to represent multidimensional data because they use the familiar notion of 2D points for encoding data elements, displaying the original data dimensions that act as springs for setting the x and y coordinates. However, this intuitive approach implies several drawbacks and produces misleading visualizations that can confuse the user, even while analyzing a single data point. The paper attacks this problem following the well known idea of changing the order of the dimensions and introducing ancillary visualizations to mitigate some of RadViz drawbacks. In particular, the paper defines the notion of point optimal disposition of the dimensions for a single data point, generalizes this concept to a set of data points, and proposes effective heuristics for dealing with the intractable problem of exploring all the $\\\\frac{{\\\\left( {n - 1} \\\\right)!}}{2}$ dispositions of the dimensions along the RadViz circumference. Additional views, visual quality metrics, and a circular grid superimposed on the RadViz complement the attribute reordering strategy and provide a better understanding of the actual plot of the data elements.\",\"PeriodicalId\":192801,\"journal\":{\"name\":\"2019 IEEE Visualization Conference (VIS)\",\"volume\":\"77 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Visualization Conference (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2019.8933775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

RadViz图通常用于表示多维数据,因为它们使用熟悉的2D点概念来编码数据元素,显示原始数据维度,作为设置x和y坐标的弹簧。然而,这种直观的方法意味着一些缺点,并且产生误导性的可视化,即使在分析单个数据点时也会使用户感到困惑。本文采用了众所周知的改变维度顺序和引入辅助可视化来减轻RadViz的一些缺点的思想来解决这个问题。特别地,本文定义了单个数据点的维数点最优配置的概念,并将其推广到一组数据点,并提出了有效的启发式方法来处理探索RadViz圆周上所有$\frac{{\left( {n - 1} \right)!}}{2}$维数配置的棘手问题。附加的视图、视觉质量度量和叠加在RadViz上的圆形网格补充了属性重新排序策略,并提供了对数据元素实际图的更好理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Enhancing RadViz Analysis and Interpretation
RadViz plots are commonly used to represent multidimensional data because they use the familiar notion of 2D points for encoding data elements, displaying the original data dimensions that act as springs for setting the x and y coordinates. However, this intuitive approach implies several drawbacks and produces misleading visualizations that can confuse the user, even while analyzing a single data point. The paper attacks this problem following the well known idea of changing the order of the dimensions and introducing ancillary visualizations to mitigate some of RadViz drawbacks. In particular, the paper defines the notion of point optimal disposition of the dimensions for a single data point, generalizes this concept to a set of data points, and proposes effective heuristics for dealing with the intractable problem of exploring all the $\frac{{\left( {n - 1} \right)!}}{2}$ dispositions of the dimensions along the RadViz circumference. Additional views, visual quality metrics, and a circular grid superimposed on the RadViz complement the attribute reordering strategy and provide a better understanding of the actual plot of the data elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信