嵌入式ASR系统中韩文数字的捆绑混合建模优化

Kihyeon Kim, Hanseok Ko
{"title":"嵌入式ASR系统中韩文数字的捆绑混合建模优化","authors":"Kihyeon Kim, Hanseok Ko","doi":"10.1109/ISCE.2004.1376017","DOIUrl":null,"url":null,"abstract":"In the embedded Automatic Speech Recognition (ASR) system, Semi-Contimrorrs Hidrlen Markov Model (SCHMM) or Tierf-Mi.rtirre (TM) model is one of tlie most promisirig acoustic modeling metliods that solve the size problem of the existing Continirons Hirldcri Markov Model (CHMM) while minimizirig the recognition peifiinnancr rlegra(iation. Moreover. f o r a geiierul isolated n,ord task, coiite.rt rlepenrlent nior1el.v sirch us tri-phones are nsed to guarantee high recognition performance of the embedded sy tem. However. tu nse the models constructed only in this way alone cannot be siifJicienr to render improved recognition rate in Korean-digit speech task 4 w r e a lurge niirtrral similarin e.rists. Hence. w e consfrnct new deilicated HMM ' S f o r all or parts of Korean-digit that has exclusive srafes using the same Gaussian pool of previoirs tri-phone mode1.s. This remedial actiori allows rlie strncture qf entire HMM.s maintained while minimizing the occupied memory space. Representative esperiments are rrpecred to reduce worderror-rate on the Korean-digit task by about 56% in enniporison with using only general rr-plione models. ' Mixture Model, Embedded ASR System. Index Terms Exclusive HMM's, Korean Digits, Tied","PeriodicalId":169376,"journal":{"name":"IEEE International Symposium on Consumer Electronics, 2004","volume":"79 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tied mixture modeling optimization for Korean-digit in the embedded ASR system\",\"authors\":\"Kihyeon Kim, Hanseok Ko\",\"doi\":\"10.1109/ISCE.2004.1376017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the embedded Automatic Speech Recognition (ASR) system, Semi-Contimrorrs Hidrlen Markov Model (SCHMM) or Tierf-Mi.rtirre (TM) model is one of tlie most promisirig acoustic modeling metliods that solve the size problem of the existing Continirons Hirldcri Markov Model (CHMM) while minimizirig the recognition peifiinnancr rlegra(iation. Moreover. f o r a geiierul isolated n,ord task, coiite.rt rlepenrlent nior1el.v sirch us tri-phones are nsed to guarantee high recognition performance of the embedded sy tem. However. tu nse the models constructed only in this way alone cannot be siifJicienr to render improved recognition rate in Korean-digit speech task 4 w r e a lurge niirtrral similarin e.rists. Hence. w e consfrnct new deilicated HMM ' S f o r all or parts of Korean-digit that has exclusive srafes using the same Gaussian pool of previoirs tri-phone mode1.s. This remedial actiori allows rlie strncture qf entire HMM.s maintained while minimizing the occupied memory space. Representative esperiments are rrpecred to reduce worderror-rate on the Korean-digit task by about 56% in enniporison with using only general rr-plione models. ' Mixture Model, Embedded ASR System. Index Terms Exclusive HMM's, Korean Digits, Tied\",\"PeriodicalId\":169376,\"journal\":{\"name\":\"IEEE International Symposium on Consumer Electronics, 2004\",\"volume\":\"79 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on Consumer Electronics, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCE.2004.1376017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Consumer Electronics, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2004.1376017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在嵌入式自动语音识别(ASR)系统中,半自适应的Hidrlen Markov模型(SCHMM)或Tierf-Mi。TM模型解决了现有连续马尔可夫模型(Continirons Hirldcri Markov model, CHMM)的尺寸问题,同时使识别误差最小化,是目前最有前途的声学建模方法之一。此外。对于一个非常孤立的词,一个任务,一个集合。我很后悔。为了保证嵌入式系统的高识别性能,采用了V搜索和三手机。然而。但是,仅以这种方式构建的模型并不足以提高韩语数字语音任务的识别率。因此。我们使用以前的三部手机模型的相同高斯池,为所有或部分具有独家结构的韩国数字构建新的精细HMM ' S。这种补救措施使整个HMM的结构更加稳定。S维护,同时尽量减少占用的内存空间。有代表性的实验表明,与只使用一般rr-plione模型相比,韩语数字任务的错误率将降低约56%。混合模型,嵌入式ASR系统。索引术语专有HMM,韩国数字,并列
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tied mixture modeling optimization for Korean-digit in the embedded ASR system
In the embedded Automatic Speech Recognition (ASR) system, Semi-Contimrorrs Hidrlen Markov Model (SCHMM) or Tierf-Mi.rtirre (TM) model is one of tlie most promisirig acoustic modeling metliods that solve the size problem of the existing Continirons Hirldcri Markov Model (CHMM) while minimizirig the recognition peifiinnancr rlegra(iation. Moreover. f o r a geiierul isolated n,ord task, coiite.rt rlepenrlent nior1el.v sirch us tri-phones are nsed to guarantee high recognition performance of the embedded sy tem. However. tu nse the models constructed only in this way alone cannot be siifJicienr to render improved recognition rate in Korean-digit speech task 4 w r e a lurge niirtrral similarin e.rists. Hence. w e consfrnct new deilicated HMM ' S f o r all or parts of Korean-digit that has exclusive srafes using the same Gaussian pool of previoirs tri-phone mode1.s. This remedial actiori allows rlie strncture qf entire HMM.s maintained while minimizing the occupied memory space. Representative esperiments are rrpecred to reduce worderror-rate on the Korean-digit task by about 56% in enniporison with using only general rr-plione models. ' Mixture Model, Embedded ASR System. Index Terms Exclusive HMM's, Korean Digits, Tied
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信