S. Prayakarao, B. Mendoza, Andrew Devine, C. Kyaw, R. V. van Dover, M. Noginov, V. Liberman
{"title":"可调谐VO2/Au双曲超材料(演示记录)","authors":"S. Prayakarao, B. Mendoza, Andrew Devine, C. Kyaw, R. V. van Dover, M. Noginov, V. Liberman","doi":"10.1117/12.2190370","DOIUrl":null,"url":null,"abstract":"Vanadium oxide (VO2) is known to undergo a semiconductor-to-metal transition at 68°C. Therefore, it can be used as a tunable component of an active metamaterial. The lamellar metamaterial designed and studied in this work is composed of subwavelength VO2 and Au layers and is predicted to have the temperature controlled transition from the hyperbolic phase to the metallic phase. The VO2 films and VO2/Au lamellar metamaterial stacks have been fabricated and studied in the electrical conductivity as well as optical (transmission, reflection) experiments. The temperature depended changes in the absorption and transmission spectra of metamaterials and films have been observed experimentally and compared with the theory predictions.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable VO2/Au hyperbolic metamaterial (Presentation Recording)\",\"authors\":\"S. Prayakarao, B. Mendoza, Andrew Devine, C. Kyaw, R. V. van Dover, M. Noginov, V. Liberman\",\"doi\":\"10.1117/12.2190370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vanadium oxide (VO2) is known to undergo a semiconductor-to-metal transition at 68°C. Therefore, it can be used as a tunable component of an active metamaterial. The lamellar metamaterial designed and studied in this work is composed of subwavelength VO2 and Au layers and is predicted to have the temperature controlled transition from the hyperbolic phase to the metallic phase. The VO2 films and VO2/Au lamellar metamaterial stacks have been fabricated and studied in the electrical conductivity as well as optical (transmission, reflection) experiments. The temperature depended changes in the absorption and transmission spectra of metamaterials and films have been observed experimentally and compared with the theory predictions.\",\"PeriodicalId\":432358,\"journal\":{\"name\":\"SPIE NanoScience + Engineering\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE NanoScience + Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2190370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE NanoScience + Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2190370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vanadium oxide (VO2) is known to undergo a semiconductor-to-metal transition at 68°C. Therefore, it can be used as a tunable component of an active metamaterial. The lamellar metamaterial designed and studied in this work is composed of subwavelength VO2 and Au layers and is predicted to have the temperature controlled transition from the hyperbolic phase to the metallic phase. The VO2 films and VO2/Au lamellar metamaterial stacks have been fabricated and studied in the electrical conductivity as well as optical (transmission, reflection) experiments. The temperature depended changes in the absorption and transmission spectra of metamaterials and films have been observed experimentally and compared with the theory predictions.