{"title":"用于MMT转换的6.5 m蜂窝夹层镜的自旋铸造","authors":"J. Hill, J. R. Angel","doi":"10.1364/oft.1992.tha4","DOIUrl":null,"url":null,"abstract":"1. Introduction The Steward Observatory Mirror Lab has recently completed the spin-casting of the largest structured mirror ever made, a 6.5-m f/1.25 honeycomb sandwich mirror of borosilicate glass. This mirror will be installed in the Multiple Mirror Telescope operated by the University of Arizona and the Smithsonian Institution, replacing the six 1.8-m mirrors that currently make up the MMT and thereby doubling its collecting area. The casting of this mirror represents the final step in development of technology to produce 8-meter-class lightweight mirror blanks. The honeycomb sandwich structure provides improved mechanical and thermal performance compared to solid blanks. The sandwich is ten times stiffer than the same mass of glass in a solid meniscus, leading to lower deformation under wind forces and lighter telescope structures. Ventilation of the honeycomb with air at ambient temperature reduces the mirror’s thermal time constant to less than an hour, allowing the mirror to accurately track the changing ambient temperature and reduce mirror seeing. Most of the large mirrors to be cast at the Mirror Lab will be extremely fast, in the range f/1.14 to f/1.25. For larger telescopes there is added incentive to keep focal lengths short, in order to minimize enclosure costs and wind-induced motion of the secondary mirror. The MMT Conversion has a particular need for short focal length: the new telescope must fit in the existing enclosure, designed for six 1.8-m f/2.7 mirrors, with only minor modifications.","PeriodicalId":142307,"journal":{"name":"Optical Fabrication and Testing Workshop","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin-casting of a 6.5-m Honeycomb Sandwich Mirror for the MMT Conversion\",\"authors\":\"J. Hill, J. R. Angel\",\"doi\":\"10.1364/oft.1992.tha4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1. Introduction The Steward Observatory Mirror Lab has recently completed the spin-casting of the largest structured mirror ever made, a 6.5-m f/1.25 honeycomb sandwich mirror of borosilicate glass. This mirror will be installed in the Multiple Mirror Telescope operated by the University of Arizona and the Smithsonian Institution, replacing the six 1.8-m mirrors that currently make up the MMT and thereby doubling its collecting area. The casting of this mirror represents the final step in development of technology to produce 8-meter-class lightweight mirror blanks. The honeycomb sandwich structure provides improved mechanical and thermal performance compared to solid blanks. The sandwich is ten times stiffer than the same mass of glass in a solid meniscus, leading to lower deformation under wind forces and lighter telescope structures. Ventilation of the honeycomb with air at ambient temperature reduces the mirror’s thermal time constant to less than an hour, allowing the mirror to accurately track the changing ambient temperature and reduce mirror seeing. Most of the large mirrors to be cast at the Mirror Lab will be extremely fast, in the range f/1.14 to f/1.25. For larger telescopes there is added incentive to keep focal lengths short, in order to minimize enclosure costs and wind-induced motion of the secondary mirror. The MMT Conversion has a particular need for short focal length: the new telescope must fit in the existing enclosure, designed for six 1.8-m f/2.7 mirrors, with only minor modifications.\",\"PeriodicalId\":142307,\"journal\":{\"name\":\"Optical Fabrication and Testing Workshop\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fabrication and Testing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/oft.1992.tha4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fabrication and Testing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/oft.1992.tha4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
1. Steward天文台镜子实验室最近完成了有史以来最大的结构镜子的旋转铸造,这是一个6.5米高/1.25的硼硅酸盐玻璃蜂窝夹层镜子。这面镜子将安装在由亚利桑那大学和史密森学会运营的多镜望远镜中,取代目前组成MMT的6面1.8米的镜子,从而使其收集面积增加一倍。这面镜子的铸造代表了生产8米级轻质镜子坯的技术发展的最后一步。蜂窝夹层结构提供了更好的机械和热性能相比,固体坯料。夹层玻璃的硬度是相同质量的半月板玻璃的十倍,因此在风力作用下变形更小,望远镜结构更轻。在环境温度下用空气对蜂窝进行通风,使镜子的热时间常数减少到一个小时以内,使镜子能够准确地跟踪环境温度的变化,减少镜子的视觉。大多数在镜子实验室铸造的大镜子将非常快,在f/1.14到f/1.25的范围内。对于较大的望远镜来说,为了最大限度地减少外壳成本和由风引起的副镜运动,还需要保持较短的焦距。MMT转换特别需要短焦距:新望远镜必须适合现有的外壳,设计为六个1.8 m f/2.7反射镜,只有微小的修改。
Spin-casting of a 6.5-m Honeycomb Sandwich Mirror for the MMT Conversion
1. Introduction The Steward Observatory Mirror Lab has recently completed the spin-casting of the largest structured mirror ever made, a 6.5-m f/1.25 honeycomb sandwich mirror of borosilicate glass. This mirror will be installed in the Multiple Mirror Telescope operated by the University of Arizona and the Smithsonian Institution, replacing the six 1.8-m mirrors that currently make up the MMT and thereby doubling its collecting area. The casting of this mirror represents the final step in development of technology to produce 8-meter-class lightweight mirror blanks. The honeycomb sandwich structure provides improved mechanical and thermal performance compared to solid blanks. The sandwich is ten times stiffer than the same mass of glass in a solid meniscus, leading to lower deformation under wind forces and lighter telescope structures. Ventilation of the honeycomb with air at ambient temperature reduces the mirror’s thermal time constant to less than an hour, allowing the mirror to accurately track the changing ambient temperature and reduce mirror seeing. Most of the large mirrors to be cast at the Mirror Lab will be extremely fast, in the range f/1.14 to f/1.25. For larger telescopes there is added incentive to keep focal lengths short, in order to minimize enclosure costs and wind-induced motion of the secondary mirror. The MMT Conversion has a particular need for short focal length: the new telescope must fit in the existing enclosure, designed for six 1.8-m f/2.7 mirrors, with only minor modifications.