基于近端增广拉格朗日的原始-对偶梯度流动动力学噪声放大研究

Hesameddin Mohammadi, M. Jovanović
{"title":"基于近端增广拉格朗日的原始-对偶梯度流动动力学噪声放大研究","authors":"Hesameddin Mohammadi, M. Jovanović","doi":"10.23919/ACC53348.2022.9867147","DOIUrl":null,"url":null,"abstract":"In this paper, we examine amplification of additive stochastic disturbances to primal-dual gradient flow dynamics based on proximal augmented Lagrangian. These dynamics can be used to solve a class of non-smooth composite optimization problems and are convenient for distributed implementation. We utilize the theory of integral quadratic constraints to show that the upper bound on noise amplification is inversely proportional to the strong-convexity module of the smooth part of the objective function. Furthermore, to demonstrate tightness of these upper bounds, we exploit the structure of quadratic optimization problems and derive analytical expressions in terms of the eigenvalues of the corresponding dynamical generators. We further specialize our results to a distributed optimization framework and discuss the impact of network topology on the noise amplification.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the noise amplification of primal-dual gradient flow dynamics based on proximal augmented Lagrangian\",\"authors\":\"Hesameddin Mohammadi, M. Jovanović\",\"doi\":\"10.23919/ACC53348.2022.9867147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we examine amplification of additive stochastic disturbances to primal-dual gradient flow dynamics based on proximal augmented Lagrangian. These dynamics can be used to solve a class of non-smooth composite optimization problems and are convenient for distributed implementation. We utilize the theory of integral quadratic constraints to show that the upper bound on noise amplification is inversely proportional to the strong-convexity module of the smooth part of the objective function. Furthermore, to demonstrate tightness of these upper bounds, we exploit the structure of quadratic optimization problems and derive analytical expressions in terms of the eigenvalues of the corresponding dynamical generators. We further specialize our results to a distributed optimization framework and discuss the impact of network topology on the noise amplification.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于近端增广拉格朗日的加性随机扰动对原始-对偶梯度流动动力学的放大。这些动态可以用来解决一类非光滑的复合优化问题,并且便于分布式实现。利用积分二次约束理论证明了噪声放大的上界与目标函数光滑部分的强凸模成反比。此外,为了证明这些上界的严密性,我们利用了二次优化问题的结构,并推导了相应动力发生器特征值的解析表达式。我们进一步将我们的结果专门用于分布式优化框架,并讨论了网络拓扑对噪声放大的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the noise amplification of primal-dual gradient flow dynamics based on proximal augmented Lagrangian
In this paper, we examine amplification of additive stochastic disturbances to primal-dual gradient flow dynamics based on proximal augmented Lagrangian. These dynamics can be used to solve a class of non-smooth composite optimization problems and are convenient for distributed implementation. We utilize the theory of integral quadratic constraints to show that the upper bound on noise amplification is inversely proportional to the strong-convexity module of the smooth part of the objective function. Furthermore, to demonstrate tightness of these upper bounds, we exploit the structure of quadratic optimization problems and derive analytical expressions in terms of the eigenvalues of the corresponding dynamical generators. We further specialize our results to a distributed optimization framework and discuss the impact of network topology on the noise amplification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信