{"title":"基于GPU的立体视觉信念传播","authors":"A. Brunton, Chang Shu, G. Roth","doi":"10.1109/CRV.2006.19","DOIUrl":null,"url":null,"abstract":"The power of Markov random field formulations of lowlevel vision problems, such as stereo, has been known for some time. However, recent advances, both algorithmic and in processing power, have made their application practical. This paper presents a novel implementation of Bayesian belief propagation for graphics processing units found in most modern desktop and notebook computers, and applies it to the stereo problem. The stereo problem is used for comparison to other BP algorithms.","PeriodicalId":369170,"journal":{"name":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Belief Propagation on the GPU for Stereo Vision\",\"authors\":\"A. Brunton, Chang Shu, G. Roth\",\"doi\":\"10.1109/CRV.2006.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power of Markov random field formulations of lowlevel vision problems, such as stereo, has been known for some time. However, recent advances, both algorithmic and in processing power, have made their application practical. This paper presents a novel implementation of Bayesian belief propagation for graphics processing units found in most modern desktop and notebook computers, and applies it to the stereo problem. The stereo problem is used for comparison to other BP algorithms.\",\"PeriodicalId\":369170,\"journal\":{\"name\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2006.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2006.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The power of Markov random field formulations of lowlevel vision problems, such as stereo, has been known for some time. However, recent advances, both algorithmic and in processing power, have made their application practical. This paper presents a novel implementation of Bayesian belief propagation for graphics processing units found in most modern desktop and notebook computers, and applies it to the stereo problem. The stereo problem is used for comparison to other BP algorithms.