C. Zhang, Yang Song, Sidong Liu, S. Lill, Chenyu Wang, Zihao Tang, Yuyi You, Yang Gao, A. Klistorner, M. Barnett, Weidong (Tom) Cai
{"title":"MS-GAN:基于gan的多发性硬化症病变脑磁共振成像语义分割","authors":"C. Zhang, Yang Song, Sidong Liu, S. Lill, Chenyu Wang, Zihao Tang, Yuyi You, Yang Gao, A. Klistorner, M. Barnett, Weidong (Tom) Cai","doi":"10.1109/DICTA.2018.8615771","DOIUrl":null,"url":null,"abstract":"Automated segmentation of multiple sclerosis (MS) lesions in brain imaging is challenging due to the high variability in lesion characteristics. Based on the generative adversarial network (GAN), we propose a semantic segmentation framework MS-GAN to localize MS lesions in multimodal brain magnetic resonance imaging (MRI), which consists of one multimodal encoder-decoder generator G and multiple discriminators D corresponding to the multiple input modalities. For the design of the generator, we adopt an encoder-decoder deep learning architecture with bypass of spatial information from encoder to the corresponding decoder, which helps to reduce the network parameters while improving the localization performance. Our generator is also designed to integrate multimodal imaging data in end-to-end learning with multi-path encoding and cross-modality fusion. An additional classification-related constraint is proposed for the adversarial training process of the GAN model, with the aim of alleviating the hard-to-converge issue in classification-based image-to-image translation problems. For evaluation, we collected a database of 126 cases from patients with relapsing MS. We also experimented with other semantic segmentation models as well as patch-based deep learning methods for performance comparison. The results show that our method provides more accurate segmentation than the state-of-the-art techniques.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"MS-GAN: GAN-Based Semantic Segmentation of Multiple Sclerosis Lesions in Brain Magnetic Resonance Imaging\",\"authors\":\"C. Zhang, Yang Song, Sidong Liu, S. Lill, Chenyu Wang, Zihao Tang, Yuyi You, Yang Gao, A. Klistorner, M. Barnett, Weidong (Tom) Cai\",\"doi\":\"10.1109/DICTA.2018.8615771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated segmentation of multiple sclerosis (MS) lesions in brain imaging is challenging due to the high variability in lesion characteristics. Based on the generative adversarial network (GAN), we propose a semantic segmentation framework MS-GAN to localize MS lesions in multimodal brain magnetic resonance imaging (MRI), which consists of one multimodal encoder-decoder generator G and multiple discriminators D corresponding to the multiple input modalities. For the design of the generator, we adopt an encoder-decoder deep learning architecture with bypass of spatial information from encoder to the corresponding decoder, which helps to reduce the network parameters while improving the localization performance. Our generator is also designed to integrate multimodal imaging data in end-to-end learning with multi-path encoding and cross-modality fusion. An additional classification-related constraint is proposed for the adversarial training process of the GAN model, with the aim of alleviating the hard-to-converge issue in classification-based image-to-image translation problems. For evaluation, we collected a database of 126 cases from patients with relapsing MS. We also experimented with other semantic segmentation models as well as patch-based deep learning methods for performance comparison. The results show that our method provides more accurate segmentation than the state-of-the-art techniques.\",\"PeriodicalId\":130057,\"journal\":{\"name\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2018.8615771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MS-GAN: GAN-Based Semantic Segmentation of Multiple Sclerosis Lesions in Brain Magnetic Resonance Imaging
Automated segmentation of multiple sclerosis (MS) lesions in brain imaging is challenging due to the high variability in lesion characteristics. Based on the generative adversarial network (GAN), we propose a semantic segmentation framework MS-GAN to localize MS lesions in multimodal brain magnetic resonance imaging (MRI), which consists of one multimodal encoder-decoder generator G and multiple discriminators D corresponding to the multiple input modalities. For the design of the generator, we adopt an encoder-decoder deep learning architecture with bypass of spatial information from encoder to the corresponding decoder, which helps to reduce the network parameters while improving the localization performance. Our generator is also designed to integrate multimodal imaging data in end-to-end learning with multi-path encoding and cross-modality fusion. An additional classification-related constraint is proposed for the adversarial training process of the GAN model, with the aim of alleviating the hard-to-converge issue in classification-based image-to-image translation problems. For evaluation, we collected a database of 126 cases from patients with relapsing MS. We also experimented with other semantic segmentation models as well as patch-based deep learning methods for performance comparison. The results show that our method provides more accurate segmentation than the state-of-the-art techniques.