消息灵通的测试用例生成和崩溃再现

P. Derakhshanfar
{"title":"消息灵通的测试用例生成和崩溃再现","authors":"P. Derakhshanfar","doi":"10.1109/icst46399.2020.00054","DOIUrl":null,"url":null,"abstract":"Search-based test data generation approaches have come a long way over the past few years, but these approaches still have some limitations when it comes to exercising specific behavior for triggering particular kinds of faults (e.g., crashes or specific types of integration between classes/modules). In this thesis, we are investigating new fitness functions and evolutionary-based algorithms and techniques to tackle these limitations. We have defined multiple novel approaches for crash reproduction and class integration testing. Currently, we are still working on improving both crash reproduction and class integration testing.","PeriodicalId":235967,"journal":{"name":"2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-informed Test Case Generation and Crash Reproduction\",\"authors\":\"P. Derakhshanfar\",\"doi\":\"10.1109/icst46399.2020.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Search-based test data generation approaches have come a long way over the past few years, but these approaches still have some limitations when it comes to exercising specific behavior for triggering particular kinds of faults (e.g., crashes or specific types of integration between classes/modules). In this thesis, we are investigating new fitness functions and evolutionary-based algorithms and techniques to tackle these limitations. We have defined multiple novel approaches for crash reproduction and class integration testing. Currently, we are still working on improving both crash reproduction and class integration testing.\",\"PeriodicalId\":235967,\"journal\":{\"name\":\"2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icst46399.2020.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icst46399.2020.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年中,基于搜索的测试数据生成方法已经取得了长足的进步,但是当涉及到为触发特定类型的错误(例如,崩溃或类/模块之间特定类型的集成)执行特定行为时,这些方法仍然有一些局限性。在本文中,我们正在研究新的适应度函数和基于进化的算法和技术来解决这些限制。我们为崩溃再现和类集成测试定义了多种新颖的方法。目前,我们仍在改进崩溃再现和类集成测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-informed Test Case Generation and Crash Reproduction
Search-based test data generation approaches have come a long way over the past few years, but these approaches still have some limitations when it comes to exercising specific behavior for triggering particular kinds of faults (e.g., crashes or specific types of integration between classes/modules). In this thesis, we are investigating new fitness functions and evolutionary-based algorithms and techniques to tackle these limitations. We have defined multiple novel approaches for crash reproduction and class integration testing. Currently, we are still working on improving both crash reproduction and class integration testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信