基于观测器的细胞光学操纵自适应控制

Xiang Li, C. Cheah
{"title":"基于观测器的细胞光学操纵自适应控制","authors":"Xiang Li, C. Cheah","doi":"10.1109/ICARCV.2012.6485337","DOIUrl":null,"url":null,"abstract":"In this paper, an observer based adaptive control method is proposed for optical manipulation of cell. The dynamics of the robotic manipulator of the laser source is introduced in the optical tweezers system, so that a closed-loop control method is formulated and solved, and a backstepping approach is used to derive a control input for the manipulator. The interaction between the cell dynamics and the manipulator dynamics leads to a fourth-order overall dynamics, and hence a nonlinear observer is constructed to avoid the use of high-order derivatives of the positions in the control input. Stability of the closed-loop system is analyzed by using Lyapunov-like analysis. Simulation results are presented to illustrate the performance of the proposed control methods.","PeriodicalId":441236,"journal":{"name":"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Observer based adaptive control for optical manipulation of cell\",\"authors\":\"Xiang Li, C. Cheah\",\"doi\":\"10.1109/ICARCV.2012.6485337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an observer based adaptive control method is proposed for optical manipulation of cell. The dynamics of the robotic manipulator of the laser source is introduced in the optical tweezers system, so that a closed-loop control method is formulated and solved, and a backstepping approach is used to derive a control input for the manipulator. The interaction between the cell dynamics and the manipulator dynamics leads to a fourth-order overall dynamics, and hence a nonlinear observer is constructed to avoid the use of high-order derivatives of the positions in the control input. Stability of the closed-loop system is analyzed by using Lyapunov-like analysis. Simulation results are presented to illustrate the performance of the proposed control methods.\",\"PeriodicalId\":441236,\"journal\":{\"name\":\"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2012.6485337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2012.6485337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于观测器的自适应控制方法,用于细胞的光学操纵。在光镊系统中引入了激光源机械臂的动力学特性,建立并求解了闭环控制方法,并采用反推法导出了机械臂的控制输入。单元动力学和机械臂动力学之间的相互作用导致整体动力学为四阶,因此构造了非线性观测器以避免控制输入中使用位置的高阶导数。利用类李雅普诺夫分析方法分析了闭环系统的稳定性。仿真结果验证了所提控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observer based adaptive control for optical manipulation of cell
In this paper, an observer based adaptive control method is proposed for optical manipulation of cell. The dynamics of the robotic manipulator of the laser source is introduced in the optical tweezers system, so that a closed-loop control method is formulated and solved, and a backstepping approach is used to derive a control input for the manipulator. The interaction between the cell dynamics and the manipulator dynamics leads to a fourth-order overall dynamics, and hence a nonlinear observer is constructed to avoid the use of high-order derivatives of the positions in the control input. Stability of the closed-loop system is analyzed by using Lyapunov-like analysis. Simulation results are presented to illustrate the performance of the proposed control methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信