QMLP:一种基于参数化双量子比特门的容错非线性量子MLP架构

Cheng Chu, Nai-Hui Chia, Lei Jiang, Fan Chen
{"title":"QMLP:一种基于参数化双量子比特门的容错非线性量子MLP架构","authors":"Cheng Chu, Nai-Hui Chia, Lei Jiang, Fan Chen","doi":"10.1145/3531437.3539719","DOIUrl":null,"url":null,"abstract":"Despite potential quantum supremacy, state-of-the-art quantum neural networks (QNNs) suffer from low inference accuracy. First, the current Noisy Intermediate-Scale Quantum (NISQ) devices with high error rates of 10− 3 to 10− 2 significantly degrade the accuracy of a QNN. Second, although recently proposed Re-Uploading Units (RUUs) introduce some non-linearity into the QNN circuits, the theory behind it is not fully understood. Furthermore, previous RUUs that repeatedly upload original data can only provide marginal accuracy improvements. Third, current QNN circuit ansatz uses fixed two-qubit gates to enforce maximum entanglement capability, making task-specific entanglement tuning impossible, resulting in poor overall performance. In this paper, we propose a Quantum Multilayer Perceptron (QMLP) architecture featured by error-tolerant input embedding, rich nonlinearity, and enhanced variational circuit ansatz with parameterized two-qubit entangling gates. Compared to prior arts, QMLP increases the inference accuracy on the 10-class MNIST dataset by 10% with 2 × fewer quantum gates and 3 × reduced parameters. Our source code is available and can be found in https://github.com/chuchengc/QMLP/.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"QMLP: An Error-Tolerant Nonlinear Quantum MLP Architecture using Parameterized Two-Qubit Gates\",\"authors\":\"Cheng Chu, Nai-Hui Chia, Lei Jiang, Fan Chen\",\"doi\":\"10.1145/3531437.3539719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite potential quantum supremacy, state-of-the-art quantum neural networks (QNNs) suffer from low inference accuracy. First, the current Noisy Intermediate-Scale Quantum (NISQ) devices with high error rates of 10− 3 to 10− 2 significantly degrade the accuracy of a QNN. Second, although recently proposed Re-Uploading Units (RUUs) introduce some non-linearity into the QNN circuits, the theory behind it is not fully understood. Furthermore, previous RUUs that repeatedly upload original data can only provide marginal accuracy improvements. Third, current QNN circuit ansatz uses fixed two-qubit gates to enforce maximum entanglement capability, making task-specific entanglement tuning impossible, resulting in poor overall performance. In this paper, we propose a Quantum Multilayer Perceptron (QMLP) architecture featured by error-tolerant input embedding, rich nonlinearity, and enhanced variational circuit ansatz with parameterized two-qubit entangling gates. Compared to prior arts, QMLP increases the inference accuracy on the 10-class MNIST dataset by 10% with 2 × fewer quantum gates and 3 × reduced parameters. Our source code is available and can be found in https://github.com/chuchengc/QMLP/.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531437.3539719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

尽管具有潜在的量子霸权,但最先进的量子神经网络(QNNs)的推理精度较低。首先,目前的噪声中尺度量子(NISQ)器件具有10−3到10−2的高错误率,显著降低了QNN的精度。其次,虽然最近提出的重上传单元(ruu)在QNN电路中引入了一些非线性,但其背后的理论尚未完全理解。此外,以前重复上传原始数据的ruu只能提供边际精度提高。第三,目前的QNN电路分析使用固定的双量子比特门来增强最大的纠缠能力,使得特定任务的纠缠无法调整,导致整体性能不佳。在本文中,我们提出了一种量子多层感知器(QMLP)架构,该架构具有容错输入嵌入,丰富的非线性和增强的变分电路ansatz与参数化的双量子比特纠缠门。与现有技术相比,QMLP在10类MNIST数据集上的推理精度提高了10%,量子门减少了2倍,参数减少了3倍。我们的源代码可以在https://github.com/chuchengc/QMLP/找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QMLP: An Error-Tolerant Nonlinear Quantum MLP Architecture using Parameterized Two-Qubit Gates
Despite potential quantum supremacy, state-of-the-art quantum neural networks (QNNs) suffer from low inference accuracy. First, the current Noisy Intermediate-Scale Quantum (NISQ) devices with high error rates of 10− 3 to 10− 2 significantly degrade the accuracy of a QNN. Second, although recently proposed Re-Uploading Units (RUUs) introduce some non-linearity into the QNN circuits, the theory behind it is not fully understood. Furthermore, previous RUUs that repeatedly upload original data can only provide marginal accuracy improvements. Third, current QNN circuit ansatz uses fixed two-qubit gates to enforce maximum entanglement capability, making task-specific entanglement tuning impossible, resulting in poor overall performance. In this paper, we propose a Quantum Multilayer Perceptron (QMLP) architecture featured by error-tolerant input embedding, rich nonlinearity, and enhanced variational circuit ansatz with parameterized two-qubit entangling gates. Compared to prior arts, QMLP increases the inference accuracy on the 10-class MNIST dataset by 10% with 2 × fewer quantum gates and 3 × reduced parameters. Our source code is available and can be found in https://github.com/chuchengc/QMLP/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信