{"title":"QMLP:一种基于参数化双量子比特门的容错非线性量子MLP架构","authors":"Cheng Chu, Nai-Hui Chia, Lei Jiang, Fan Chen","doi":"10.1145/3531437.3539719","DOIUrl":null,"url":null,"abstract":"Despite potential quantum supremacy, state-of-the-art quantum neural networks (QNNs) suffer from low inference accuracy. First, the current Noisy Intermediate-Scale Quantum (NISQ) devices with high error rates of 10− 3 to 10− 2 significantly degrade the accuracy of a QNN. Second, although recently proposed Re-Uploading Units (RUUs) introduce some non-linearity into the QNN circuits, the theory behind it is not fully understood. Furthermore, previous RUUs that repeatedly upload original data can only provide marginal accuracy improvements. Third, current QNN circuit ansatz uses fixed two-qubit gates to enforce maximum entanglement capability, making task-specific entanglement tuning impossible, resulting in poor overall performance. In this paper, we propose a Quantum Multilayer Perceptron (QMLP) architecture featured by error-tolerant input embedding, rich nonlinearity, and enhanced variational circuit ansatz with parameterized two-qubit entangling gates. Compared to prior arts, QMLP increases the inference accuracy on the 10-class MNIST dataset by 10% with 2 × fewer quantum gates and 3 × reduced parameters. Our source code is available and can be found in https://github.com/chuchengc/QMLP/.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"QMLP: An Error-Tolerant Nonlinear Quantum MLP Architecture using Parameterized Two-Qubit Gates\",\"authors\":\"Cheng Chu, Nai-Hui Chia, Lei Jiang, Fan Chen\",\"doi\":\"10.1145/3531437.3539719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite potential quantum supremacy, state-of-the-art quantum neural networks (QNNs) suffer from low inference accuracy. First, the current Noisy Intermediate-Scale Quantum (NISQ) devices with high error rates of 10− 3 to 10− 2 significantly degrade the accuracy of a QNN. Second, although recently proposed Re-Uploading Units (RUUs) introduce some non-linearity into the QNN circuits, the theory behind it is not fully understood. Furthermore, previous RUUs that repeatedly upload original data can only provide marginal accuracy improvements. Third, current QNN circuit ansatz uses fixed two-qubit gates to enforce maximum entanglement capability, making task-specific entanglement tuning impossible, resulting in poor overall performance. In this paper, we propose a Quantum Multilayer Perceptron (QMLP) architecture featured by error-tolerant input embedding, rich nonlinearity, and enhanced variational circuit ansatz with parameterized two-qubit entangling gates. Compared to prior arts, QMLP increases the inference accuracy on the 10-class MNIST dataset by 10% with 2 × fewer quantum gates and 3 × reduced parameters. Our source code is available and can be found in https://github.com/chuchengc/QMLP/.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531437.3539719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
QMLP: An Error-Tolerant Nonlinear Quantum MLP Architecture using Parameterized Two-Qubit Gates
Despite potential quantum supremacy, state-of-the-art quantum neural networks (QNNs) suffer from low inference accuracy. First, the current Noisy Intermediate-Scale Quantum (NISQ) devices with high error rates of 10− 3 to 10− 2 significantly degrade the accuracy of a QNN. Second, although recently proposed Re-Uploading Units (RUUs) introduce some non-linearity into the QNN circuits, the theory behind it is not fully understood. Furthermore, previous RUUs that repeatedly upload original data can only provide marginal accuracy improvements. Third, current QNN circuit ansatz uses fixed two-qubit gates to enforce maximum entanglement capability, making task-specific entanglement tuning impossible, resulting in poor overall performance. In this paper, we propose a Quantum Multilayer Perceptron (QMLP) architecture featured by error-tolerant input embedding, rich nonlinearity, and enhanced variational circuit ansatz with parameterized two-qubit entangling gates. Compared to prior arts, QMLP increases the inference accuracy on the 10-class MNIST dataset by 10% with 2 × fewer quantum gates and 3 × reduced parameters. Our source code is available and can be found in https://github.com/chuchengc/QMLP/.