基于时空轨迹数据的居民活动模式挖掘

Jiangyue Sun, Zhentao Zhang, Haibo Chen, Daolei Liang
{"title":"基于时空轨迹数据的居民活动模式挖掘","authors":"Jiangyue Sun, Zhentao Zhang, Haibo Chen, Daolei Liang","doi":"10.1109/ISCID52796.2021.00075","DOIUrl":null,"url":null,"abstract":"The research on residents' activity pattern based on spatio-temporal trajectory data is helpful to the optimization of urban operation. At present, one of the difficulties in the research is how to determine the regularity of residents' activities when the labeled samples are sparse. We propose an improved periodic decision algorithm of sliding window, combined with feedforward neural network to search outlier activity patterns. Experimental results show that our method can effectively classify the overall travel features and quantify individual activity abnormalities.","PeriodicalId":332239,"journal":{"name":"2021 14th International Symposium on Computational Intelligence and Design (ISCID)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining Resident Activity Pattern Based on Spatio-temporal Trajectory Data\",\"authors\":\"Jiangyue Sun, Zhentao Zhang, Haibo Chen, Daolei Liang\",\"doi\":\"10.1109/ISCID52796.2021.00075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research on residents' activity pattern based on spatio-temporal trajectory data is helpful to the optimization of urban operation. At present, one of the difficulties in the research is how to determine the regularity of residents' activities when the labeled samples are sparse. We propose an improved periodic decision algorithm of sliding window, combined with feedforward neural network to search outlier activity patterns. Experimental results show that our method can effectively classify the overall travel features and quantify individual activity abnormalities.\",\"PeriodicalId\":332239,\"journal\":{\"name\":\"2021 14th International Symposium on Computational Intelligence and Design (ISCID)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 14th International Symposium on Computational Intelligence and Design (ISCID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID52796.2021.00075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th International Symposium on Computational Intelligence and Design (ISCID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID52796.2021.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于时空轨迹数据的居民活动模式研究有助于城市运行的优化。目前研究的难点之一是在标记样本稀疏的情况下,如何确定居民活动的规律性。提出了一种改进的滑动窗口周期决策算法,结合前馈神经网络搜索离群点活动模式。实验结果表明,该方法可以有效地对整体出行特征进行分类,并对个体活动异常进行量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Resident Activity Pattern Based on Spatio-temporal Trajectory Data
The research on residents' activity pattern based on spatio-temporal trajectory data is helpful to the optimization of urban operation. At present, one of the difficulties in the research is how to determine the regularity of residents' activities when the labeled samples are sparse. We propose an improved periodic decision algorithm of sliding window, combined with feedforward neural network to search outlier activity patterns. Experimental results show that our method can effectively classify the overall travel features and quantify individual activity abnormalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信