{"title":"评估边缘到云连续体上的策略驱动适应","authors":"Daniel Balouek-Thomert, I. Rodero, M. Parashar","doi":"10.1109/UrgentHPC54802.2021.00007","DOIUrl":null,"url":null,"abstract":"Developing data-driven applications requires developers and service providers to orchestrate data-to-discovery pipelines across distributed data sources and computing units. Realizing such pipelines poses two major challenges: programming analytics that reacts at runtime to unforeseen events, and adaptation of the resources and computing paths between the edge and the cloud. While these concerns are interdependent, they must be separated during the design process of the application and the deployment operations of the infrastructure. This work proposes a system stack for the adaptation of distributed analytics across the computing continuum. We implemented this software stack to evaluate its ability to continually balance the computation or data movement’s cost with the value of operations to the application objectives. Using a disaster response application, we observe that the system can select appropriate configurations while managing trade-offs between user-defined constraints, quality of results, and resource utilization. The evaluation shows that our model is able to adapt to variations in the data input size, bandwidth, and CPU capacities with minimal deadline violations (close to 10%). This constitutes encouraging results to benefit and facilitate the creation of ad-hoc computing paths for urgent science and time-critical decision-making.","PeriodicalId":360682,"journal":{"name":"2021 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluating policy-driven adaptation on the Edge-to-Cloud Continuum\",\"authors\":\"Daniel Balouek-Thomert, I. Rodero, M. Parashar\",\"doi\":\"10.1109/UrgentHPC54802.2021.00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing data-driven applications requires developers and service providers to orchestrate data-to-discovery pipelines across distributed data sources and computing units. Realizing such pipelines poses two major challenges: programming analytics that reacts at runtime to unforeseen events, and adaptation of the resources and computing paths between the edge and the cloud. While these concerns are interdependent, they must be separated during the design process of the application and the deployment operations of the infrastructure. This work proposes a system stack for the adaptation of distributed analytics across the computing continuum. We implemented this software stack to evaluate its ability to continually balance the computation or data movement’s cost with the value of operations to the application objectives. Using a disaster response application, we observe that the system can select appropriate configurations while managing trade-offs between user-defined constraints, quality of results, and resource utilization. The evaluation shows that our model is able to adapt to variations in the data input size, bandwidth, and CPU capacities with minimal deadline violations (close to 10%). This constitutes encouraging results to benefit and facilitate the creation of ad-hoc computing paths for urgent science and time-critical decision-making.\",\"PeriodicalId\":360682,\"journal\":{\"name\":\"2021 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UrgentHPC54802.2021.00007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UrgentHPC54802.2021.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating policy-driven adaptation on the Edge-to-Cloud Continuum
Developing data-driven applications requires developers and service providers to orchestrate data-to-discovery pipelines across distributed data sources and computing units. Realizing such pipelines poses two major challenges: programming analytics that reacts at runtime to unforeseen events, and adaptation of the resources and computing paths between the edge and the cloud. While these concerns are interdependent, they must be separated during the design process of the application and the deployment operations of the infrastructure. This work proposes a system stack for the adaptation of distributed analytics across the computing continuum. We implemented this software stack to evaluate its ability to continually balance the computation or data movement’s cost with the value of operations to the application objectives. Using a disaster response application, we observe that the system can select appropriate configurations while managing trade-offs between user-defined constraints, quality of results, and resource utilization. The evaluation shows that our model is able to adapt to variations in the data input size, bandwidth, and CPU capacities with minimal deadline violations (close to 10%). This constitutes encouraging results to benefit and facilitate the creation of ad-hoc computing paths for urgent science and time-critical decision-making.