比较不同的人工神经网络技术在利用不同的气象变量组合预测太阳辐射发电中的应用

A. Yadav, H. Malik
{"title":"比较不同的人工神经网络技术在利用不同的气象变量组合预测太阳辐射发电中的应用","authors":"A. Yadav, H. Malik","doi":"10.1109/PEDES.2014.7042063","DOIUrl":null,"url":null,"abstract":"The main objective of present study is to compare ANN model develop with neural network fitting tool (nftool), Radial Basis Function Neural Network (RBFNN) in predicting solar radiation for power generation. The three combinations of input variables are considered for prediction. The RBFNN utilizing input parameters as latitude, longitude, height above sea level and sunshine hours has mean absolute percentage error (MAPE) of 4.94% and absolute fraction of variance (R2) of 96.18% respectively and it give better results than conventional solar radiation prediction models (Angstrom, Akinoglu and Ecevit, Bahel, Almorox and Hontoria). Therefore RBFNN can be used for prediction of solar radiation for solar power generation.","PeriodicalId":124701,"journal":{"name":"2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Comparison of different artificial neural network techniques in prediction of solar radiation for power generation using different combinations of meterological variables\",\"authors\":\"A. Yadav, H. Malik\",\"doi\":\"10.1109/PEDES.2014.7042063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of present study is to compare ANN model develop with neural network fitting tool (nftool), Radial Basis Function Neural Network (RBFNN) in predicting solar radiation for power generation. The three combinations of input variables are considered for prediction. The RBFNN utilizing input parameters as latitude, longitude, height above sea level and sunshine hours has mean absolute percentage error (MAPE) of 4.94% and absolute fraction of variance (R2) of 96.18% respectively and it give better results than conventional solar radiation prediction models (Angstrom, Akinoglu and Ecevit, Bahel, Almorox and Hontoria). Therefore RBFNN can be used for prediction of solar radiation for solar power generation.\",\"PeriodicalId\":124701,\"journal\":{\"name\":\"2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDES.2014.7042063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDES.2014.7042063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本研究的主要目的是比较神经网络模型与神经网络拟合工具(nftool)、径向基函数神经网络(RBFNN)在预测发电太阳辐射中的应用。考虑了三种输入变量的组合来进行预测。以纬度、经度、海拔高度和日照时数为输入参数的RBFNN平均绝对百分比误差(MAPE)为4.94%,绝对方差(R2)为96.18%,优于常规太阳辐射预测模型(Angstrom、Akinoglu和Ecevit、Bahel、Almorox和Hontoria)。因此,RBFNN可用于太阳能发电的太阳辐射预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of different artificial neural network techniques in prediction of solar radiation for power generation using different combinations of meterological variables
The main objective of present study is to compare ANN model develop with neural network fitting tool (nftool), Radial Basis Function Neural Network (RBFNN) in predicting solar radiation for power generation. The three combinations of input variables are considered for prediction. The RBFNN utilizing input parameters as latitude, longitude, height above sea level and sunshine hours has mean absolute percentage error (MAPE) of 4.94% and absolute fraction of variance (R2) of 96.18% respectively and it give better results than conventional solar radiation prediction models (Angstrom, Akinoglu and Ecevit, Bahel, Almorox and Hontoria). Therefore RBFNN can be used for prediction of solar radiation for solar power generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信