利用程序结构的自适应程序鲁棒学习

Jervis Pinto, Alan Fern, Tim Bauer, Martin Erwig
{"title":"利用程序结构的自适应程序鲁棒学习","authors":"Jervis Pinto, Alan Fern, Tim Bauer, Martin Erwig","doi":"10.1109/ICMLA.2010.150","DOIUrl":null,"url":null,"abstract":"We study how to effectively integrate reinforcement learning (RL) and programming languages via adaptation-based programming, where programs can include non-deterministic structures that can be automatically optimized via RL. Prior work has optimized adaptive programs by defining an induced sequential decision process to which standard RL is applied. Here we show that the success of this approach is highly sensitive to the specific program structure, where even seemingly minor program transformations can lead to failure. This sensitivity makes it extremely difficult for a non-RL-expert to write effective adaptive programs. In this paper, we study a more robust learning approach, where the key idea is to leverage information about program structure in order to define a more informative decision process and to improve the SARSA(\\lambda) RL algorithm. Our empirical results show significant benefits for this approach.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Robust Learning for Adaptive Programs by Leveraging Program Structure\",\"authors\":\"Jervis Pinto, Alan Fern, Tim Bauer, Martin Erwig\",\"doi\":\"10.1109/ICMLA.2010.150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study how to effectively integrate reinforcement learning (RL) and programming languages via adaptation-based programming, where programs can include non-deterministic structures that can be automatically optimized via RL. Prior work has optimized adaptive programs by defining an induced sequential decision process to which standard RL is applied. Here we show that the success of this approach is highly sensitive to the specific program structure, where even seemingly minor program transformations can lead to failure. This sensitivity makes it extremely difficult for a non-RL-expert to write effective adaptive programs. In this paper, we study a more robust learning approach, where the key idea is to leverage information about program structure in order to define a more informative decision process and to improve the SARSA(\\\\lambda) RL algorithm. Our empirical results show significant benefits for this approach.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们研究了如何通过基于适应的编程有效地整合强化学习(RL)和编程语言,其中程序可以包括可以通过RL自动优化的非确定性结构。先前的工作通过定义一个适用于标准RL的诱导顺序决策过程来优化自适应程序。这里我们展示了这种方法的成功是对特定的程序结构高度敏感的,即使看起来很小的程序转换也可能导致失败。这种敏感性使得非强化学习专家很难编写有效的自适应程序。在本文中,我们研究了一种更稳健的学习方法,其关键思想是利用有关程序结构的信息来定义更具信息量的决策过程,并改进SARSA(\lambda) RL算法。我们的实证结果显示了这种方法的显著好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Learning for Adaptive Programs by Leveraging Program Structure
We study how to effectively integrate reinforcement learning (RL) and programming languages via adaptation-based programming, where programs can include non-deterministic structures that can be automatically optimized via RL. Prior work has optimized adaptive programs by defining an induced sequential decision process to which standard RL is applied. Here we show that the success of this approach is highly sensitive to the specific program structure, where even seemingly minor program transformations can lead to failure. This sensitivity makes it extremely difficult for a non-RL-expert to write effective adaptive programs. In this paper, we study a more robust learning approach, where the key idea is to leverage information about program structure in order to define a more informative decision process and to improve the SARSA(\lambda) RL algorithm. Our empirical results show significant benefits for this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信