{"title":"低功耗高精度可调谐赢家通吃网络","authors":"R. Canegallo, M. Chinosi, A. Kramer","doi":"10.1109/MNNFS.1996.493805","DOIUrl":null,"url":null,"abstract":"This paper describes a low power CMOS circuit for selecting the greatest of n analog voltages within a tunable selection range. An increasing speed-decreasing precision law is used to determine the amplitude of the selection range. 16 mV to 4 mV resolution, over a 2 V to 4 V dynamic input range, can be obtained by reducing the speed from 2 MHz to 500 kHz. 1 /spl mu/A quiescent current, 2 /spl mu/A AC current for the selected cells and small size make this circuit available for VLSI implementations of massively parallel analog computational circuits.","PeriodicalId":151891,"journal":{"name":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","volume":"109 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A low-power high-precision tunable WINNER-TAKE-ALL network\",\"authors\":\"R. Canegallo, M. Chinosi, A. Kramer\",\"doi\":\"10.1109/MNNFS.1996.493805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a low power CMOS circuit for selecting the greatest of n analog voltages within a tunable selection range. An increasing speed-decreasing precision law is used to determine the amplitude of the selection range. 16 mV to 4 mV resolution, over a 2 V to 4 V dynamic input range, can be obtained by reducing the speed from 2 MHz to 500 kHz. 1 /spl mu/A quiescent current, 2 /spl mu/A AC current for the selected cells and small size make this circuit available for VLSI implementations of massively parallel analog computational circuits.\",\"PeriodicalId\":151891,\"journal\":{\"name\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"volume\":\"109 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNNFS.1996.493805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNNFS.1996.493805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low-power high-precision tunable WINNER-TAKE-ALL network
This paper describes a low power CMOS circuit for selecting the greatest of n analog voltages within a tunable selection range. An increasing speed-decreasing precision law is used to determine the amplitude of the selection range. 16 mV to 4 mV resolution, over a 2 V to 4 V dynamic input range, can be obtained by reducing the speed from 2 MHz to 500 kHz. 1 /spl mu/A quiescent current, 2 /spl mu/A AC current for the selected cells and small size make this circuit available for VLSI implementations of massively parallel analog computational circuits.