Anoh Yannick Kraidi, Jean-Pierre Auguste Taki, Kinvi Kangni
{"title":"再生核卡坦子代数的一些性质","authors":"Anoh Yannick Kraidi, Jean-Pierre Auguste Taki, Kinvi Kangni","doi":"10.37418/amsj.12.5.1","DOIUrl":null,"url":null,"abstract":"Let $\\mathfrak{j}$ and $\\mathfrak{j}^{'}$ be the Cartan subalgebras of the complex semi-simple Lie algebras $\\mathfrak{g}$ and $\\mathfrak{g}^{'}$, $\\mathfrak{j}^{*}$ and $(\\mathfrak{j}^{'})^{*}$ their duals, $\\mathfrak{j}^{\\vee}$ and $(\\mathfrak{j}^{'})^{\\vee}$ the biduals of $\\mathfrak{j}$ and $\\mathfrak{j}^{'}$ respectively. We consider $B(.,.)$, the restriction to $\\mathfrak{j}$ and to $\\mathfrak{j}^{'}$ of the Killing form of $\\mathfrak{g}$ and $\\mathfrak{g}^{'}$. In this work, using the kernel $K$ of the reproducing kernel Cartan subalgebra $\\mathfrak{j}^{\\vee}$ and an operator $\\Phi$ from $\\mathfrak{j}^{*}$ to $(\\mathfrak{j}^{'})^{*}$, we construct another reproducing kernel Cartan subalgebra denoted by $\\mathfrak{j}_{\\Phi}^{\\vee}$ obtained from the kernel $K \\circ \\Phi$ and study the relationships between $\\mathfrak{j}^{\\vee}$, $\\mathfrak{j}_{\\Phi}^{\\vee}$ and $(\\mathfrak{j}^{'})^{\\vee}$.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOME PROPERTIES OF REPRODUCING KERNEL CARTAN SUBALGEBRA\",\"authors\":\"Anoh Yannick Kraidi, Jean-Pierre Auguste Taki, Kinvi Kangni\",\"doi\":\"10.37418/amsj.12.5.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathfrak{j}$ and $\\\\mathfrak{j}^{'}$ be the Cartan subalgebras of the complex semi-simple Lie algebras $\\\\mathfrak{g}$ and $\\\\mathfrak{g}^{'}$, $\\\\mathfrak{j}^{*}$ and $(\\\\mathfrak{j}^{'})^{*}$ their duals, $\\\\mathfrak{j}^{\\\\vee}$ and $(\\\\mathfrak{j}^{'})^{\\\\vee}$ the biduals of $\\\\mathfrak{j}$ and $\\\\mathfrak{j}^{'}$ respectively. We consider $B(.,.)$, the restriction to $\\\\mathfrak{j}$ and to $\\\\mathfrak{j}^{'}$ of the Killing form of $\\\\mathfrak{g}$ and $\\\\mathfrak{g}^{'}$. In this work, using the kernel $K$ of the reproducing kernel Cartan subalgebra $\\\\mathfrak{j}^{\\\\vee}$ and an operator $\\\\Phi$ from $\\\\mathfrak{j}^{*}$ to $(\\\\mathfrak{j}^{'})^{*}$, we construct another reproducing kernel Cartan subalgebra denoted by $\\\\mathfrak{j}_{\\\\Phi}^{\\\\vee}$ obtained from the kernel $K \\\\circ \\\\Phi$ and study the relationships between $\\\\mathfrak{j}^{\\\\vee}$, $\\\\mathfrak{j}_{\\\\Phi}^{\\\\vee}$ and $(\\\\mathfrak{j}^{'})^{\\\\vee}$.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.12.5.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.5.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SOME PROPERTIES OF REPRODUCING KERNEL CARTAN SUBALGEBRA
Let $\mathfrak{j}$ and $\mathfrak{j}^{'}$ be the Cartan subalgebras of the complex semi-simple Lie algebras $\mathfrak{g}$ and $\mathfrak{g}^{'}$, $\mathfrak{j}^{*}$ and $(\mathfrak{j}^{'})^{*}$ their duals, $\mathfrak{j}^{\vee}$ and $(\mathfrak{j}^{'})^{\vee}$ the biduals of $\mathfrak{j}$ and $\mathfrak{j}^{'}$ respectively. We consider $B(.,.)$, the restriction to $\mathfrak{j}$ and to $\mathfrak{j}^{'}$ of the Killing form of $\mathfrak{g}$ and $\mathfrak{g}^{'}$. In this work, using the kernel $K$ of the reproducing kernel Cartan subalgebra $\mathfrak{j}^{\vee}$ and an operator $\Phi$ from $\mathfrak{j}^{*}$ to $(\mathfrak{j}^{'})^{*}$, we construct another reproducing kernel Cartan subalgebra denoted by $\mathfrak{j}_{\Phi}^{\vee}$ obtained from the kernel $K \circ \Phi$ and study the relationships between $\mathfrak{j}^{\vee}$, $\mathfrak{j}_{\Phi}^{\vee}$ and $(\mathfrak{j}^{'})^{\vee}$.