利用集群计算支持自动和动态的数据库集群

Sylvain Guinepain, L. Gruenwald
{"title":"利用集群计算支持自动和动态的数据库集群","authors":"Sylvain Guinepain, L. Gruenwald","doi":"10.1109/CLUSTR.2008.4663800","DOIUrl":null,"url":null,"abstract":"Query response time is the number one metrics when it comes to database performance. Because of data proliferation, efficient access methods and data storage techniques have become increasingly critical to maintain an acceptable query response time. Retrieving data from disk is several orders of magnitude slower than retrieving it from memory, it is easy to see the direct correlation between query response time and the number of disk I/Os. One of the common ways to reduce disk I/Os and therefore improve query response time is database clustering, which is a process that partitions the database vertically (attribute clustering) and/or horizontally (record clustering). A clustering is optimized for a given set of queries. However in dynamic systems the queries change with time, the clustering in place becomes obsolete, and the database needs to be re-clustered dynamically. This paper presents an efficient algorithm for attribute clustering that dynamically and automatically generates attribute clusters based on closed item sets mined from the attributes sets found in the queries running against the database. The paper then discusses how this algorithm can be implemented using the cluster computing paradigm to reduce query response time even further through parallelism and data redundancy.","PeriodicalId":198768,"journal":{"name":"2008 IEEE International Conference on Cluster Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Using cluster computing to support automatic and dynamic database clustering\",\"authors\":\"Sylvain Guinepain, L. Gruenwald\",\"doi\":\"10.1109/CLUSTR.2008.4663800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Query response time is the number one metrics when it comes to database performance. Because of data proliferation, efficient access methods and data storage techniques have become increasingly critical to maintain an acceptable query response time. Retrieving data from disk is several orders of magnitude slower than retrieving it from memory, it is easy to see the direct correlation between query response time and the number of disk I/Os. One of the common ways to reduce disk I/Os and therefore improve query response time is database clustering, which is a process that partitions the database vertically (attribute clustering) and/or horizontally (record clustering). A clustering is optimized for a given set of queries. However in dynamic systems the queries change with time, the clustering in place becomes obsolete, and the database needs to be re-clustered dynamically. This paper presents an efficient algorithm for attribute clustering that dynamically and automatically generates attribute clusters based on closed item sets mined from the attributes sets found in the queries running against the database. The paper then discusses how this algorithm can be implemented using the cluster computing paradigm to reduce query response time even further through parallelism and data redundancy.\",\"PeriodicalId\":198768,\"journal\":{\"name\":\"2008 IEEE International Conference on Cluster Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTR.2008.4663800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2008.4663800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

查询响应时间是数据库性能的首要指标。由于数据的激增,高效的访问方法和数据存储技术对于维持可接受的查询响应时间变得越来越重要。从磁盘检索数据要比从内存检索数据慢几个数量级,因此很容易看到查询响应时间与磁盘I/ o数量之间的直接关联。减少磁盘I/ o从而提高查询响应时间的常见方法之一是数据库集群,这是一个垂直(属性集群)和/或水平(记录集群)划分数据库的过程。集群是针对给定的查询集进行优化的。然而,在动态系统中,查询随着时间的变化而变化,就地集群变得过时,数据库需要动态地重新集群。本文提出了一种高效的属性聚类算法,该算法基于从数据库查询中发现的属性集中挖掘的封闭项集,动态自动地生成属性聚类。然后,本文讨论了如何使用集群计算范式实现该算法,从而通过并行性和数据冗余进一步减少查询响应时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using cluster computing to support automatic and dynamic database clustering
Query response time is the number one metrics when it comes to database performance. Because of data proliferation, efficient access methods and data storage techniques have become increasingly critical to maintain an acceptable query response time. Retrieving data from disk is several orders of magnitude slower than retrieving it from memory, it is easy to see the direct correlation between query response time and the number of disk I/Os. One of the common ways to reduce disk I/Os and therefore improve query response time is database clustering, which is a process that partitions the database vertically (attribute clustering) and/or horizontally (record clustering). A clustering is optimized for a given set of queries. However in dynamic systems the queries change with time, the clustering in place becomes obsolete, and the database needs to be re-clustered dynamically. This paper presents an efficient algorithm for attribute clustering that dynamically and automatically generates attribute clusters based on closed item sets mined from the attributes sets found in the queries running against the database. The paper then discusses how this algorithm can be implemented using the cluster computing paradigm to reduce query response time even further through parallelism and data redundancy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信