基于fdob的力传感器鲁棒阻抗控制实现力伺服系统

Kangwagye Samuel, Sehoon Oh
{"title":"基于fdob的力传感器鲁棒阻抗控制实现力伺服系统","authors":"Kangwagye Samuel, Sehoon Oh","doi":"10.1109/IECON48115.2021.9589162","DOIUrl":null,"url":null,"abstract":"Instability which occurs when the robot’s end effector contacts a very stiff environment is a challenge in designing control systems for safe physical interaction and cooperation of robots with environment. One of the reasons for the instability is force disturbances caused by the mechanical factors of the robot system. To this effect, this paper presents the design, analysis, and implementation of a robust impedance controller for a force servo system. To suppress the force disturbances, a force disturbance observer (FDOB) is implemented in the impedance-controlled system. For comparison purposes, impedance control system when the FDOB is not implemented is also designed and analyzed. Further, using the passivity approach, coupled stability conditions of the designed impedance control systems are derived and analyzed to assess the effect of FDOB on passivity and overall control performance. Simulations and experiments are conducted to evaluate performance of the designed impedance control systems and it is found that the FDOB-based control system shows superior performance by improving contact stability compared to direct force sensor feedback control system.","PeriodicalId":443337,"journal":{"name":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FDOB-Based Robust Impedance Control of Force Sensor Implemented Force Servo System\",\"authors\":\"Kangwagye Samuel, Sehoon Oh\",\"doi\":\"10.1109/IECON48115.2021.9589162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instability which occurs when the robot’s end effector contacts a very stiff environment is a challenge in designing control systems for safe physical interaction and cooperation of robots with environment. One of the reasons for the instability is force disturbances caused by the mechanical factors of the robot system. To this effect, this paper presents the design, analysis, and implementation of a robust impedance controller for a force servo system. To suppress the force disturbances, a force disturbance observer (FDOB) is implemented in the impedance-controlled system. For comparison purposes, impedance control system when the FDOB is not implemented is also designed and analyzed. Further, using the passivity approach, coupled stability conditions of the designed impedance control systems are derived and analyzed to assess the effect of FDOB on passivity and overall control performance. Simulations and experiments are conducted to evaluate performance of the designed impedance control systems and it is found that the FDOB-based control system shows superior performance by improving contact stability compared to direct force sensor feedback control system.\",\"PeriodicalId\":443337,\"journal\":{\"name\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON48115.2021.9589162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON48115.2021.9589162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当机器人末端执行器接触非常坚硬的环境时发生的不稳定性是设计机器人与环境安全物理交互和合作控制系统的挑战。机器人系统不稳定的原因之一是由机械因素引起的力扰动。为此,本文提出了一种用于力伺服系统的鲁棒阻抗控制器的设计、分析和实现。为了抑制力扰动,在阻抗控制系统中引入了力扰动观测器(FDOB)。为了比较,还设计和分析了不实现FDOB时的阻抗控制系统。利用无源性方法,推导并分析了所设计阻抗控制系统的耦合稳定性条件,以评估FDOB对无源性和整体控制性能的影响。通过仿真和实验对所设计的阻抗控制系统的性能进行了评价,结果表明,与直接力传感器反馈控制系统相比,基于fdob的阻抗控制系统通过提高接触稳定性而具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FDOB-Based Robust Impedance Control of Force Sensor Implemented Force Servo System
Instability which occurs when the robot’s end effector contacts a very stiff environment is a challenge in designing control systems for safe physical interaction and cooperation of robots with environment. One of the reasons for the instability is force disturbances caused by the mechanical factors of the robot system. To this effect, this paper presents the design, analysis, and implementation of a robust impedance controller for a force servo system. To suppress the force disturbances, a force disturbance observer (FDOB) is implemented in the impedance-controlled system. For comparison purposes, impedance control system when the FDOB is not implemented is also designed and analyzed. Further, using the passivity approach, coupled stability conditions of the designed impedance control systems are derived and analyzed to assess the effect of FDOB on passivity and overall control performance. Simulations and experiments are conducted to evaluate performance of the designed impedance control systems and it is found that the FDOB-based control system shows superior performance by improving contact stability compared to direct force sensor feedback control system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信