利用多时相MODIS数据检测西伯利亚中部地区西伯利亚蚕蛾危害

K. Kovacs, K. Ranson, V. Kharuk
{"title":"利用多时相MODIS数据检测西伯利亚中部地区西伯利亚蚕蛾危害","authors":"K. Kovacs, K. Ranson, V. Kharuk","doi":"10.1109/AMTRSI.2005.1469833","DOIUrl":null,"url":null,"abstract":"As part of a NASA supported Siberian disturbance mapping project, the capabilities of multi- temporal MODIS data to detect insect damage in the boreal forest were evaluated. Multi-temporal in the context of this study includes both multi-annual and multi- seasonal data. More specifically, the aim of this study was to ascertain what combination of multi-temporal MODIS Enhanced Vegetation Index (EVI) and Middle Infrared (MIR) data is best for detecting insect disturbance with or without a priori knowledge.","PeriodicalId":302923,"journal":{"name":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Detecting siberian silk moth damage in central siberia using multi-temporal MODIS data\",\"authors\":\"K. Kovacs, K. Ranson, V. Kharuk\",\"doi\":\"10.1109/AMTRSI.2005.1469833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As part of a NASA supported Siberian disturbance mapping project, the capabilities of multi- temporal MODIS data to detect insect damage in the boreal forest were evaluated. Multi-temporal in the context of this study includes both multi-annual and multi- seasonal data. More specifically, the aim of this study was to ascertain what combination of multi-temporal MODIS Enhanced Vegetation Index (EVI) and Middle Infrared (MIR) data is best for detecting insect disturbance with or without a priori knowledge.\",\"PeriodicalId\":302923,\"journal\":{\"name\":\"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMTRSI.2005.1469833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMTRSI.2005.1469833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

作为美国国家航空航天局支持的西伯利亚扰动测绘项目的一部分,评估了多时相MODIS数据在北方森林中探测昆虫损害的能力。在本研究的背景下,多时间包括多年和多季节的数据。更具体地说,本研究的目的是确定在有或没有先验知识的情况下,MODIS增强型植被指数(EVI)和中红外(MIR)数据的哪种组合最适合用于检测昆虫干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting siberian silk moth damage in central siberia using multi-temporal MODIS data
As part of a NASA supported Siberian disturbance mapping project, the capabilities of multi- temporal MODIS data to detect insect damage in the boreal forest were evaluated. Multi-temporal in the context of this study includes both multi-annual and multi- seasonal data. More specifically, the aim of this study was to ascertain what combination of multi-temporal MODIS Enhanced Vegetation Index (EVI) and Middle Infrared (MIR) data is best for detecting insect disturbance with or without a priori knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信