U. Kapasi, W. Dally, S. Rixner, John Douglas Owens, Brucek Khailany
{"title":"Imagine流处理器","authors":"U. Kapasi, W. Dally, S. Rixner, John Douglas Owens, Brucek Khailany","doi":"10.1109/ICCD.2002.1106783","DOIUrl":null,"url":null,"abstract":"The Imagine Stream Processor is a single-chip programmable media processor with 48 parallel ALUs. At 400 MHz, this translates to a peak arithmetic rate of 16 GFLOPS on single-precision data and 32 GOPS on 16 bit fixed-point data. The scalability of Imagine's programming model and architecture enable it to achieve such high arithmetic rates. Imagine executes applications that have been mapped to the stream programming model. The stream model decomposes applications into a set of computation kernels that operate on data streams. This mapping exposes the inherent locality and parallelism in the application, and Imagine exploits the locality and parallelism to provide a scalable architecture that supports 48 ALUs on a single chip. This paper presents the Imagine architecture and programming model in the first half and explores the scalability of the Imagine architecture in the second half.","PeriodicalId":164768,"journal":{"name":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"256","resultStr":"{\"title\":\"The Imagine Stream Processor\",\"authors\":\"U. Kapasi, W. Dally, S. Rixner, John Douglas Owens, Brucek Khailany\",\"doi\":\"10.1109/ICCD.2002.1106783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Imagine Stream Processor is a single-chip programmable media processor with 48 parallel ALUs. At 400 MHz, this translates to a peak arithmetic rate of 16 GFLOPS on single-precision data and 32 GOPS on 16 bit fixed-point data. The scalability of Imagine's programming model and architecture enable it to achieve such high arithmetic rates. Imagine executes applications that have been mapped to the stream programming model. The stream model decomposes applications into a set of computation kernels that operate on data streams. This mapping exposes the inherent locality and parallelism in the application, and Imagine exploits the locality and parallelism to provide a scalable architecture that supports 48 ALUs on a single chip. This paper presents the Imagine architecture and programming model in the first half and explores the scalability of the Imagine architecture in the second half.\",\"PeriodicalId\":164768,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"256\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2002.1106783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2002.1106783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Imagine Stream Processor is a single-chip programmable media processor with 48 parallel ALUs. At 400 MHz, this translates to a peak arithmetic rate of 16 GFLOPS on single-precision data and 32 GOPS on 16 bit fixed-point data. The scalability of Imagine's programming model and architecture enable it to achieve such high arithmetic rates. Imagine executes applications that have been mapped to the stream programming model. The stream model decomposes applications into a set of computation kernels that operate on data streams. This mapping exposes the inherent locality and parallelism in the application, and Imagine exploits the locality and parallelism to provide a scalable architecture that supports 48 ALUs on a single chip. This paper presents the Imagine architecture and programming model in the first half and explores the scalability of the Imagine architecture in the second half.