基于神经网络的量子电路自动合成

Kentaro Murakami, Jianjun Zhao
{"title":"基于神经网络的量子电路自动合成","authors":"Kentaro Murakami, Jianjun Zhao","doi":"10.1109/QRS57517.2022.00075","DOIUrl":null,"url":null,"abstract":"While the ability to build quantum computers is improving dramatically, developing quantum algorithms is very limited and relies on human insight and ingenuity. Although several quantum programming languages have been developed, it is challenging for software developers unfamiliar with quantum computing to learn and use these languages. It is, therefore, necessary to develop tools to support developing new quantum algorithms and programs automatically. This paper proposes AutoQC, an approach to automatically synthesizing quantum circuits using the neural network from input and output pairs. We consider a quantum circuit a sequence of quantum gates and synthesize a quantum circuit probabilistically by prioritizing through a neural network at each step. The experimental results highlight the ability of AutoQC to synthesize some essential quantum circuits at a lower cost.","PeriodicalId":143812,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Synthesis of Quantum Circuits using Neural Network\",\"authors\":\"Kentaro Murakami, Jianjun Zhao\",\"doi\":\"10.1109/QRS57517.2022.00075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the ability to build quantum computers is improving dramatically, developing quantum algorithms is very limited and relies on human insight and ingenuity. Although several quantum programming languages have been developed, it is challenging for software developers unfamiliar with quantum computing to learn and use these languages. It is, therefore, necessary to develop tools to support developing new quantum algorithms and programs automatically. This paper proposes AutoQC, an approach to automatically synthesizing quantum circuits using the neural network from input and output pairs. We consider a quantum circuit a sequence of quantum gates and synthesize a quantum circuit probabilistically by prioritizing through a neural network at each step. The experimental results highlight the ability of AutoQC to synthesize some essential quantum circuits at a lower cost.\",\"PeriodicalId\":143812,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS57517.2022.00075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS57517.2022.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然建造量子计算机的能力正在显著提高,但开发量子算法非常有限,并且依赖于人类的洞察力和聪明才智。虽然已经开发了几种量子编程语言,但对于不熟悉量子计算的软件开发人员来说,学习和使用这些语言是具有挑战性的。因此,有必要开发工具来支持自动开发新的量子算法和程序。本文提出了一种利用神经网络从输入和输出对自动合成量子电路的方法——AutoQC。我们认为量子电路是一个量子门序列,并通过神经网络在每一步进行优先级排序,以概率方式合成量子电路。实验结果突出了AutoQC以较低成本合成一些基本量子电路的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Synthesis of Quantum Circuits using Neural Network
While the ability to build quantum computers is improving dramatically, developing quantum algorithms is very limited and relies on human insight and ingenuity. Although several quantum programming languages have been developed, it is challenging for software developers unfamiliar with quantum computing to learn and use these languages. It is, therefore, necessary to develop tools to support developing new quantum algorithms and programs automatically. This paper proposes AutoQC, an approach to automatically synthesizing quantum circuits using the neural network from input and output pairs. We consider a quantum circuit a sequence of quantum gates and synthesize a quantum circuit probabilistically by prioritizing through a neural network at each step. The experimental results highlight the ability of AutoQC to synthesize some essential quantum circuits at a lower cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信