K. Bektaş, A. Çöltekin, J. Krüger, A. Duchowski, S. Fabrikant
{"title":"GeoGCD:通过视景显示改进视觉搜索","authors":"K. Bektaş, A. Çöltekin, J. Krüger, A. Duchowski, S. Fabrikant","doi":"10.1145/3317959.3321488","DOIUrl":null,"url":null,"abstract":"Gaze-Contingent Displays (GCDs) can improve visual search performance on large displays. GCDs, a Level Of Detail (LOD) management technique, discards redundant peripheral detail using various human visual perception models. Models of depth and contrast perception (e.g., depth-of-field and foveation) have often been studied to address the trade-off between the computational and perceptual benefits of GCDs. However, color perception models and combinations of multiple models have not received as much attention. In this paper, we present GeoGCD which uses individual contrast, color, and depth-perception models, and their combination to render scenes without perceptible latency. As proof-of-concept, we present a three-stage user evaluation built upon geographic image interpretation tasks. GeoGCD does not impair users' visual search performance or affect their display preferences. On the contrary, in some cases, it can significantly improve users' performance.","PeriodicalId":161901,"journal":{"name":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"GeoGCD: improved visual search via gaze-contingent display\",\"authors\":\"K. Bektaş, A. Çöltekin, J. Krüger, A. Duchowski, S. Fabrikant\",\"doi\":\"10.1145/3317959.3321488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaze-Contingent Displays (GCDs) can improve visual search performance on large displays. GCDs, a Level Of Detail (LOD) management technique, discards redundant peripheral detail using various human visual perception models. Models of depth and contrast perception (e.g., depth-of-field and foveation) have often been studied to address the trade-off between the computational and perceptual benefits of GCDs. However, color perception models and combinations of multiple models have not received as much attention. In this paper, we present GeoGCD which uses individual contrast, color, and depth-perception models, and their combination to render scenes without perceptible latency. As proof-of-concept, we present a three-stage user evaluation built upon geographic image interpretation tasks. GeoGCD does not impair users' visual search performance or affect their display preferences. On the contrary, in some cases, it can significantly improve users' performance.\",\"PeriodicalId\":161901,\"journal\":{\"name\":\"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3317959.3321488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3317959.3321488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GeoGCD: improved visual search via gaze-contingent display
Gaze-Contingent Displays (GCDs) can improve visual search performance on large displays. GCDs, a Level Of Detail (LOD) management technique, discards redundant peripheral detail using various human visual perception models. Models of depth and contrast perception (e.g., depth-of-field and foveation) have often been studied to address the trade-off between the computational and perceptual benefits of GCDs. However, color perception models and combinations of multiple models have not received as much attention. In this paper, we present GeoGCD which uses individual contrast, color, and depth-perception models, and their combination to render scenes without perceptible latency. As proof-of-concept, we present a three-stage user evaluation built upon geographic image interpretation tasks. GeoGCD does not impair users' visual search performance or affect their display preferences. On the contrary, in some cases, it can significantly improve users' performance.