质数图与 2Dn(q)相同的简单群

B. Khosravi, A. Babai
{"title":"质数图与 2Dn(q)相同的简单群","authors":"B. Khosravi, A. Babai","doi":"10.2298/PIM150304024K","DOIUrl":null,"url":null,"abstract":"In 2006, Vasil'ev posed the problem: Does there exist a positive integer k \n such that there are no k pairwise nonisomorphic nonabelian finite simple \n groups with the same graphs of primes? Conjecture: k = 5. In 2013, Zvezdina, \n confirmed the conjecture for the case when one of the groups is alternating. \n We continue this work and determine all nonabelian simple groups having the \n same prime graphs as the nonabelian simple group 2Dn(q).","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simple groups with the same prime graph as 2Dn(q)\",\"authors\":\"B. Khosravi, A. Babai\",\"doi\":\"10.2298/PIM150304024K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2006, Vasil'ev posed the problem: Does there exist a positive integer k \\n such that there are no k pairwise nonisomorphic nonabelian finite simple \\n groups with the same graphs of primes? Conjecture: k = 5. In 2013, Zvezdina, \\n confirmed the conjecture for the case when one of the groups is alternating. \\n We continue this work and determine all nonabelian simple groups having the \\n same prime graphs as the nonabelian simple group 2Dn(q).\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM150304024K\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM150304024K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

2006 年,Vasil'ev 提出了一个问题:是否存在一个正整数 k,使得不存在 k 个具有相同素数图的成对非同构非标注有限简单群?猜想:k = 5。2013 年,兹韦兹迪娜(Zvezdina)证实了其中一个群交替出现时的猜想。 我们继续这项工作,并确定了所有与非标注简单群 2Dn(q)具有相同素数图的非标注简单群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple groups with the same prime graph as 2Dn(q)
In 2006, Vasil'ev posed the problem: Does there exist a positive integer k such that there are no k pairwise nonisomorphic nonabelian finite simple groups with the same graphs of primes? Conjecture: k = 5. In 2013, Zvezdina, confirmed the conjecture for the case when one of the groups is alternating. We continue this work and determine all nonabelian simple groups having the same prime graphs as the nonabelian simple group 2Dn(q).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信