{"title":"质数图与 2Dn(q)相同的简单群","authors":"B. Khosravi, A. Babai","doi":"10.2298/PIM150304024K","DOIUrl":null,"url":null,"abstract":"In 2006, Vasil'ev posed the problem: Does there exist a positive integer k \n such that there are no k pairwise nonisomorphic nonabelian finite simple \n groups with the same graphs of primes? Conjecture: k = 5. In 2013, Zvezdina, \n confirmed the conjecture for the case when one of the groups is alternating. \n We continue this work and determine all nonabelian simple groups having the \n same prime graphs as the nonabelian simple group 2Dn(q).","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simple groups with the same prime graph as 2Dn(q)\",\"authors\":\"B. Khosravi, A. Babai\",\"doi\":\"10.2298/PIM150304024K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2006, Vasil'ev posed the problem: Does there exist a positive integer k \\n such that there are no k pairwise nonisomorphic nonabelian finite simple \\n groups with the same graphs of primes? Conjecture: k = 5. In 2013, Zvezdina, \\n confirmed the conjecture for the case when one of the groups is alternating. \\n We continue this work and determine all nonabelian simple groups having the \\n same prime graphs as the nonabelian simple group 2Dn(q).\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM150304024K\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM150304024K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In 2006, Vasil'ev posed the problem: Does there exist a positive integer k
such that there are no k pairwise nonisomorphic nonabelian finite simple
groups with the same graphs of primes? Conjecture: k = 5. In 2013, Zvezdina,
confirmed the conjecture for the case when one of the groups is alternating.
We continue this work and determine all nonabelian simple groups having the
same prime graphs as the nonabelian simple group 2Dn(q).