基于半监督Doc2Vec的Twitter数据情感分析

Metin Bilgin, İzzet Fatih Şentürk
{"title":"基于半监督Doc2Vec的Twitter数据情感分析","authors":"Metin Bilgin, İzzet Fatih Şentürk","doi":"10.1109/UBMK.2017.8093492","DOIUrl":null,"url":null,"abstract":"Twitter is one of the most popular microblog sites developed in recent years. Feelings are analysed on the messages shared on Twitter so that users ideas on the products and companies can be determined. Sentiment analysis helps companies to improve their products and services based on the feedback obtained from the users through Twitter. In this study, it was aimed to perform sentiment analysis on Turkish and English Twitter messages using Doc2Vec. The Doc2Vec algorithm was run on Positive, Negative and Neutral tagged data using the Semi-Supervised learning method and the results were recorded.","PeriodicalId":201903,"journal":{"name":"2017 International Conference on Computer Science and Engineering (UBMK)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Sentiment analysis on Twitter data with semi-supervised Doc2Vec\",\"authors\":\"Metin Bilgin, İzzet Fatih Şentürk\",\"doi\":\"10.1109/UBMK.2017.8093492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter is one of the most popular microblog sites developed in recent years. Feelings are analysed on the messages shared on Twitter so that users ideas on the products and companies can be determined. Sentiment analysis helps companies to improve their products and services based on the feedback obtained from the users through Twitter. In this study, it was aimed to perform sentiment analysis on Turkish and English Twitter messages using Doc2Vec. The Doc2Vec algorithm was run on Positive, Negative and Neutral tagged data using the Semi-Supervised learning method and the results were recorded.\",\"PeriodicalId\":201903,\"journal\":{\"name\":\"2017 International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK.2017.8093492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2017.8093492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

Twitter是近年来发展起来的最受欢迎的微博网站之一。对Twitter上分享的信息进行情感分析,从而确定用户对产品和公司的看法。情感分析可以帮助公司根据用户通过Twitter获得的反馈来改进产品和服务。在本研究中,目的是使用Doc2Vec对土耳其语和英语Twitter消息进行情感分析。采用半监督学习方法对Positive, Negative和Neutral标记数据运行Doc2Vec算法,并记录结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment analysis on Twitter data with semi-supervised Doc2Vec
Twitter is one of the most popular microblog sites developed in recent years. Feelings are analysed on the messages shared on Twitter so that users ideas on the products and companies can be determined. Sentiment analysis helps companies to improve their products and services based on the feedback obtained from the users through Twitter. In this study, it was aimed to perform sentiment analysis on Turkish and English Twitter messages using Doc2Vec. The Doc2Vec algorithm was run on Positive, Negative and Neutral tagged data using the Semi-Supervised learning method and the results were recorded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信