{"title":"对话系统中多模态情感识别的增强人机交互学习","authors":"C. Leung, James J. Deng, Yuanxi Li","doi":"10.1145/3579654.3579764","DOIUrl":null,"url":null,"abstract":"Emotion recognition has been well researched in mono-modality in the past decade. However, people express their emotion or feelings naturally via more than one modalities like voice, facial expressions, text, and behaviors. In this paper, we propose a new method to model deep interactive learning and dual modalities (e.g., speech and text) to conduct multimodal emotion recognition. An unsupervised triplet-loss objective function is constructed to learn representation of emotional information from speech audio. We extract text emotional feature representation by transfer learning of text-to-text embedding from T5 pre-trained model. Human-machine interaction like user feedback plays a vital role in improve multimodal emotion recognition in dialogue system. Deep interactive learning model is constructed by explicit and implicit feedback. Human-machine interactive learning enhanced transformer model can achieve higher levels of accuracy and precision than their non-interactive counterparts.","PeriodicalId":146783,"journal":{"name":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Human-Machine Interactive Learning for Multimodal Emotion Recognition in Dialogue System\",\"authors\":\"C. Leung, James J. Deng, Yuanxi Li\",\"doi\":\"10.1145/3579654.3579764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion recognition has been well researched in mono-modality in the past decade. However, people express their emotion or feelings naturally via more than one modalities like voice, facial expressions, text, and behaviors. In this paper, we propose a new method to model deep interactive learning and dual modalities (e.g., speech and text) to conduct multimodal emotion recognition. An unsupervised triplet-loss objective function is constructed to learn representation of emotional information from speech audio. We extract text emotional feature representation by transfer learning of text-to-text embedding from T5 pre-trained model. Human-machine interaction like user feedback plays a vital role in improve multimodal emotion recognition in dialogue system. Deep interactive learning model is constructed by explicit and implicit feedback. Human-machine interactive learning enhanced transformer model can achieve higher levels of accuracy and precision than their non-interactive counterparts.\",\"PeriodicalId\":146783,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3579654.3579764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579654.3579764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced Human-Machine Interactive Learning for Multimodal Emotion Recognition in Dialogue System
Emotion recognition has been well researched in mono-modality in the past decade. However, people express their emotion or feelings naturally via more than one modalities like voice, facial expressions, text, and behaviors. In this paper, we propose a new method to model deep interactive learning and dual modalities (e.g., speech and text) to conduct multimodal emotion recognition. An unsupervised triplet-loss objective function is constructed to learn representation of emotional information from speech audio. We extract text emotional feature representation by transfer learning of text-to-text embedding from T5 pre-trained model. Human-machine interaction like user feedback plays a vital role in improve multimodal emotion recognition in dialogue system. Deep interactive learning model is constructed by explicit and implicit feedback. Human-machine interactive learning enhanced transformer model can achieve higher levels of accuracy and precision than their non-interactive counterparts.