基于语义规范合成指令选择规则库

Sebastian Buchwald, Andreas Fried, Sebastian Hack
{"title":"基于语义规范合成指令选择规则库","authors":"Sebastian Buchwald, Andreas Fried, Sebastian Hack","doi":"10.1145/3168821","DOIUrl":null,"url":null,"abstract":"Instruction selection is the part of a compiler that transforms intermediate representation (IR) code into machine code. Instruction selectors build on a library of hundreds if not thousands of rules. Creating and maintaining these rules is a tedious and error-prone manual process. In this paper, we present a fully automatic approach to create provably correct rule libraries from formal specifications of the instruction set architecture and the compiler IR. We use a hybrid approach that combines enumerative techniques with template-based counterexample-guided inductive synthesis (CEGIS). Thereby, we overcome several shortcomings of existing approaches, which were not able to handle complex instructions in a reasonable amount of time. In particular, we efficiently model memory operations. Our tool synthesized a large part of the integer arithmetic rules for the x86 architecture within a few days where existing techniques could not deliver a substantial rule library within weeks. Using the rule library, we generate a prototype instruction selector that produces code on par with a manually-tuned instruction selector. Furthermore, using 63012 test cases generated from the rule library, we identified 29498 rules that both Clang and GCC miss.","PeriodicalId":103558,"journal":{"name":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Synthesizing an instruction selection rule library from semantic specifications\",\"authors\":\"Sebastian Buchwald, Andreas Fried, Sebastian Hack\",\"doi\":\"10.1145/3168821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instruction selection is the part of a compiler that transforms intermediate representation (IR) code into machine code. Instruction selectors build on a library of hundreds if not thousands of rules. Creating and maintaining these rules is a tedious and error-prone manual process. In this paper, we present a fully automatic approach to create provably correct rule libraries from formal specifications of the instruction set architecture and the compiler IR. We use a hybrid approach that combines enumerative techniques with template-based counterexample-guided inductive synthesis (CEGIS). Thereby, we overcome several shortcomings of existing approaches, which were not able to handle complex instructions in a reasonable amount of time. In particular, we efficiently model memory operations. Our tool synthesized a large part of the integer arithmetic rules for the x86 architecture within a few days where existing techniques could not deliver a substantial rule library within weeks. Using the rule library, we generate a prototype instruction selector that produces code on par with a manually-tuned instruction selector. Furthermore, using 63012 test cases generated from the rule library, we identified 29498 rules that both Clang and GCC miss.\",\"PeriodicalId\":103558,\"journal\":{\"name\":\"Proceedings of the 2018 International Symposium on Code Generation and Optimization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Symposium on Code Generation and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3168821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3168821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

指令选择是编译器将中间表示(IR)代码转换为机器代码的一部分。指令选择器建立在包含数百甚至数千条规则的库之上。创建和维护这些规则是一个繁琐且容易出错的手动过程。在本文中,我们提出了一种基于指令集体系结构和编译器IR的形式化规范来创建可证明正确的规则库的全自动方法。我们使用一种混合方法,将枚举技术与基于模板的反例引导归纳合成(CEGIS)相结合。因此,我们克服了现有方法的几个缺点,即不能在合理的时间内处理复杂的指令。特别是,我们有效地为内存操作建模。我们的工具在几天内合成了x86体系结构的大部分整数算术规则,而现有技术无法在几周内交付大量规则库。使用规则库,我们生成一个原型指令选择器,它产生的代码与手动调优的指令选择器相当。此外,使用从规则库生成的63012个测试用例,我们确定了Clang和GCC都遗漏的29498条规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesizing an instruction selection rule library from semantic specifications
Instruction selection is the part of a compiler that transforms intermediate representation (IR) code into machine code. Instruction selectors build on a library of hundreds if not thousands of rules. Creating and maintaining these rules is a tedious and error-prone manual process. In this paper, we present a fully automatic approach to create provably correct rule libraries from formal specifications of the instruction set architecture and the compiler IR. We use a hybrid approach that combines enumerative techniques with template-based counterexample-guided inductive synthesis (CEGIS). Thereby, we overcome several shortcomings of existing approaches, which were not able to handle complex instructions in a reasonable amount of time. In particular, we efficiently model memory operations. Our tool synthesized a large part of the integer arithmetic rules for the x86 architecture within a few days where existing techniques could not deliver a substantial rule library within weeks. Using the rule library, we generate a prototype instruction selector that produces code on par with a manually-tuned instruction selector. Furthermore, using 63012 test cases generated from the rule library, we identified 29498 rules that both Clang and GCC miss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信