基于匿名数据集的信息内容质量度量的发展

Ian Oliver, Y. Miché
{"title":"基于匿名数据集的信息内容质量度量的发展","authors":"Ian Oliver, Y. Miché","doi":"10.1109/QUATIC.2016.047","DOIUrl":null,"url":null,"abstract":"We propose a framework for measuring the impact of data anonymisation and obfuscation in information theoretic and data mining terms. Privacy functions often hamper machine learning but obscuring the classification functions. We propose to use Mutual Information over non-Euclidean spaces as a means of measuring the distortion induced by privacy function and following the same principle, we also propose to use Machine Learning techniques in order to quantify the impact of said obfuscation in terms of further data mining goals.","PeriodicalId":157671,"journal":{"name":"2016 10th International Conference on the Quality of Information and Communications Technology (QUATIC)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Development of a Metric for Quality of Information Content over Anonymised Data-Sets\",\"authors\":\"Ian Oliver, Y. Miché\",\"doi\":\"10.1109/QUATIC.2016.047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a framework for measuring the impact of data anonymisation and obfuscation in information theoretic and data mining terms. Privacy functions often hamper machine learning but obscuring the classification functions. We propose to use Mutual Information over non-Euclidean spaces as a means of measuring the distortion induced by privacy function and following the same principle, we also propose to use Machine Learning techniques in order to quantify the impact of said obfuscation in terms of further data mining goals.\",\"PeriodicalId\":157671,\"journal\":{\"name\":\"2016 10th International Conference on the Quality of Information and Communications Technology (QUATIC)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Conference on the Quality of Information and Communications Technology (QUATIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QUATIC.2016.047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on the Quality of Information and Communications Technology (QUATIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QUATIC.2016.047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个框架来衡量信息理论和数据挖掘术语中数据匿名和混淆的影响。隐私功能通常会阻碍机器学习,但会模糊分类功能。我们建议使用非欧几里得空间上的互信息作为测量隐私函数引起的失真的手段,并遵循相同的原则,我们还建议使用机器学习技术,以便在进一步的数据挖掘目标方面量化所述混淆的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Development of a Metric for Quality of Information Content over Anonymised Data-Sets
We propose a framework for measuring the impact of data anonymisation and obfuscation in information theoretic and data mining terms. Privacy functions often hamper machine learning but obscuring the classification functions. We propose to use Mutual Information over non-Euclidean spaces as a means of measuring the distortion induced by privacy function and following the same principle, we also propose to use Machine Learning techniques in order to quantify the impact of said obfuscation in terms of further data mining goals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信