带电液体射流的几何VoF数值模拟

S. Cândido, José C. Páscoa
{"title":"带电液体射流的几何VoF数值模拟","authors":"S. Cândido, José C. Páscoa","doi":"10.1115/imece2021-69817","DOIUrl":null,"url":null,"abstract":"\n The stretch of interfacial flows due to the external application of an electric field has considerable importance in several applications. These range from engineering nanofibres to propulsion, the electrified jets bring us an outstanding technique to perform the emission of microdroplets. The present investigation concerns the resolution of interfacial electrohydrodynamic flows from a numerical standpoint using computational fluid dynamics. The reduced form of the Maxwell equations, for an electrostatic field, and a transport equation for the electric charges are coupled to the standard interFoam solvers on OpenFOAM, which resolves an immiscible two-phase flow. A laminar condition is assumed for the flow thus the laminar incompressible Navier-Stokes’s equations are used to compute the hydrodynamic behavior of the flow and, associated with them, electrically induced body forces are incorporated into the hydrodynamic momentum equation. The Maxwell Stress Tensor (MST) describes electrical surface forces acting on the liquid, making it possible to incorporate that effect on the momentum equation. A new efficient geometric Volume-of-Fluid (VoF) method for general meshes, called isoAdvector, was implemented in OpenFOAM, as a substitute for the Multidimensional Universal Limiter for Explicit Solution (MULES). The open literature on the subject presents quantitative benchmarks that demonstrated a significant improvement in the quality with which we can compute sharper interfaces on immiscible two-phase flows (Gamet, L. et al. 2020). Following this approach, we present here an application of that method to the simulation of the breakup of electrified liquids jets. To validate the implementation of the electric field equations, the order of the accuracy of the spatial and time discretization is herein computed. The validation of the discretization of the electric field equations is accomplished with a planar test case that is considered a benchmark test for this class of flows. The test case showed good accuracy on the resolution of the electric potential and electric field having lesser than 0.1% of difference against the theoretical solution. The code is then applied to a Taylor cone jet. This type of jets is at the base of the Electro-hydrodynamic sprays (EHDS) physics. These latter operate by a potential difference between a conductive liquid, usually on the tip of a needle, and an extractor electrode. The numerical model shows a remarkable accuracy on the prediction of the charged droplet size.","PeriodicalId":112698,"journal":{"name":"Volume 10: Fluids Engineering","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical Simulation of Electrified Liquid Jets Using a Geometrical VoF Method\",\"authors\":\"S. Cândido, José C. Páscoa\",\"doi\":\"10.1115/imece2021-69817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The stretch of interfacial flows due to the external application of an electric field has considerable importance in several applications. These range from engineering nanofibres to propulsion, the electrified jets bring us an outstanding technique to perform the emission of microdroplets. The present investigation concerns the resolution of interfacial electrohydrodynamic flows from a numerical standpoint using computational fluid dynamics. The reduced form of the Maxwell equations, for an electrostatic field, and a transport equation for the electric charges are coupled to the standard interFoam solvers on OpenFOAM, which resolves an immiscible two-phase flow. A laminar condition is assumed for the flow thus the laminar incompressible Navier-Stokes’s equations are used to compute the hydrodynamic behavior of the flow and, associated with them, electrically induced body forces are incorporated into the hydrodynamic momentum equation. The Maxwell Stress Tensor (MST) describes electrical surface forces acting on the liquid, making it possible to incorporate that effect on the momentum equation. A new efficient geometric Volume-of-Fluid (VoF) method for general meshes, called isoAdvector, was implemented in OpenFOAM, as a substitute for the Multidimensional Universal Limiter for Explicit Solution (MULES). The open literature on the subject presents quantitative benchmarks that demonstrated a significant improvement in the quality with which we can compute sharper interfaces on immiscible two-phase flows (Gamet, L. et al. 2020). Following this approach, we present here an application of that method to the simulation of the breakup of electrified liquids jets. To validate the implementation of the electric field equations, the order of the accuracy of the spatial and time discretization is herein computed. The validation of the discretization of the electric field equations is accomplished with a planar test case that is considered a benchmark test for this class of flows. The test case showed good accuracy on the resolution of the electric potential and electric field having lesser than 0.1% of difference against the theoretical solution. The code is then applied to a Taylor cone jet. This type of jets is at the base of the Electro-hydrodynamic sprays (EHDS) physics. These latter operate by a potential difference between a conductive liquid, usually on the tip of a needle, and an extractor electrode. The numerical model shows a remarkable accuracy on the prediction of the charged droplet size.\",\"PeriodicalId\":112698,\"journal\":{\"name\":\"Volume 10: Fluids Engineering\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: Fluids Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-69817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-69817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在一些应用中,由于外加电场而引起的界面流动的拉伸具有相当重要的意义。这些范围从工程纳米纤维到推进,电气化射流为我们提供了一种出色的技术来执行微液滴的发射。本研究从数值角度出发,利用计算流体动力学方法对界面电流体动力流动进行求解。静电场麦克斯韦方程的简化形式和电荷的输运方程耦合到OpenFOAM上的标准interFoam求解器上,该求解器解决了不混相两相流。假定流具有层流条件,利用层流不可压缩的Navier-Stokes方程计算流的水动力特性,并将电诱导体力纳入流体动力动量方程。麦克斯韦应力张量(MST)描述了作用在液体上的电表面力,使得将这种影响纳入动量方程成为可能。在OpenFOAM中实现了一种新的高效几何流体体积(VoF)方法,称为isoAdvector,作为显式解的多维通用限制器(MULES)的替代品。关于该主题的公开文献提出了量化基准,证明了质量的显着提高,我们可以在非混相两相流上计算更清晰的界面(Gamet, L. et al. 2020)。根据这种方法,我们在这里提出了一种应用该方法来模拟带电液体射流的破裂。为了验证电场方程的实现,本文计算了空间离散化和时间离散化的精度顺序。电场方程离散化的验证是通过一个平面测试案例完成的,该测试案例被认为是这类流动的基准测试。测试用例对电势和电场的解析精度较好,与理论解的误差小于0.1%。然后将代码应用于泰勒锥射流。这种类型的射流是电流体动力学喷雾(EHDS)物理学的基础。后者通过通常在针尖上的导电液体和提取器电极之间的电位差来工作。数值模型对带电液滴尺寸的预测具有显著的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Simulation of Electrified Liquid Jets Using a Geometrical VoF Method
The stretch of interfacial flows due to the external application of an electric field has considerable importance in several applications. These range from engineering nanofibres to propulsion, the electrified jets bring us an outstanding technique to perform the emission of microdroplets. The present investigation concerns the resolution of interfacial electrohydrodynamic flows from a numerical standpoint using computational fluid dynamics. The reduced form of the Maxwell equations, for an electrostatic field, and a transport equation for the electric charges are coupled to the standard interFoam solvers on OpenFOAM, which resolves an immiscible two-phase flow. A laminar condition is assumed for the flow thus the laminar incompressible Navier-Stokes’s equations are used to compute the hydrodynamic behavior of the flow and, associated with them, electrically induced body forces are incorporated into the hydrodynamic momentum equation. The Maxwell Stress Tensor (MST) describes electrical surface forces acting on the liquid, making it possible to incorporate that effect on the momentum equation. A new efficient geometric Volume-of-Fluid (VoF) method for general meshes, called isoAdvector, was implemented in OpenFOAM, as a substitute for the Multidimensional Universal Limiter for Explicit Solution (MULES). The open literature on the subject presents quantitative benchmarks that demonstrated a significant improvement in the quality with which we can compute sharper interfaces on immiscible two-phase flows (Gamet, L. et al. 2020). Following this approach, we present here an application of that method to the simulation of the breakup of electrified liquids jets. To validate the implementation of the electric field equations, the order of the accuracy of the spatial and time discretization is herein computed. The validation of the discretization of the electric field equations is accomplished with a planar test case that is considered a benchmark test for this class of flows. The test case showed good accuracy on the resolution of the electric potential and electric field having lesser than 0.1% of difference against the theoretical solution. The code is then applied to a Taylor cone jet. This type of jets is at the base of the Electro-hydrodynamic sprays (EHDS) physics. These latter operate by a potential difference between a conductive liquid, usually on the tip of a needle, and an extractor electrode. The numerical model shows a remarkable accuracy on the prediction of the charged droplet size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信