基于三维卷积神经网络的距离-多普勒特征人体检测

Youngwook Kim, Ibrahim Alnujaim, S. You, Byung Jang Jeong
{"title":"基于三维卷积神经网络的距离-多普勒特征人体检测","authors":"Youngwook Kim, Ibrahim Alnujaim, S. You, Byung Jang Jeong","doi":"10.1109/IGARSS39084.2020.9324052","DOIUrl":null,"url":null,"abstract":"Human detection is proposed based on time-varying range- Doppler signatures measured by millimeter-wave FMCW radar using deep recurrent neural networks. Human detection is a significant topic for security, surveillance, and search and rescue. When a target is measured by fast-chirp FMCW radar, a range-Doppler diagram can be constructed in real time. Because the signatures in a range-Doppler diagram are time-varying, we investigated the feasibility of classifying targets using those signatures. We measured five classes-humans, cars, cyclists, dogs, and road clutter-using millimeter-wave FMCW radar. We applied 3D-convolutional neural networks to 3D representations of time-varying signatures and achieved a classification accuracy of 97%, with a human detection rate of 100%.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Human Detection with Range-Doppler Signatures Using 3D Convolutional Neural Networks\",\"authors\":\"Youngwook Kim, Ibrahim Alnujaim, S. You, Byung Jang Jeong\",\"doi\":\"10.1109/IGARSS39084.2020.9324052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human detection is proposed based on time-varying range- Doppler signatures measured by millimeter-wave FMCW radar using deep recurrent neural networks. Human detection is a significant topic for security, surveillance, and search and rescue. When a target is measured by fast-chirp FMCW radar, a range-Doppler diagram can be constructed in real time. Because the signatures in a range-Doppler diagram are time-varying, we investigated the feasibility of classifying targets using those signatures. We measured five classes-humans, cars, cyclists, dogs, and road clutter-using millimeter-wave FMCW radar. We applied 3D-convolutional neural networks to 3D representations of time-varying signatures and achieved a classification accuracy of 97%, with a human detection rate of 100%.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9324052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了基于毫米波FMCW雷达测量的时变距离多普勒特征,利用深度递归神经网络进行人体检测的方法。人体检测是安全、监视和搜救领域的重要课题。当快速啁啾FMCW雷达对目标进行测量时,可以实时构建距离-多普勒图。由于距离-多普勒图中的特征是时变的,我们研究了利用这些特征对目标进行分类的可行性。我们使用毫米波FMCW雷达测量了五种类型——人类、汽车、骑自行车的人、狗和道路杂波。我们将3D-卷积神经网络应用于时变特征的3D表示,并实现了97%的分类准确率,人类检测率为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Detection with Range-Doppler Signatures Using 3D Convolutional Neural Networks
Human detection is proposed based on time-varying range- Doppler signatures measured by millimeter-wave FMCW radar using deep recurrent neural networks. Human detection is a significant topic for security, surveillance, and search and rescue. When a target is measured by fast-chirp FMCW radar, a range-Doppler diagram can be constructed in real time. Because the signatures in a range-Doppler diagram are time-varying, we investigated the feasibility of classifying targets using those signatures. We measured five classes-humans, cars, cyclists, dogs, and road clutter-using millimeter-wave FMCW radar. We applied 3D-convolutional neural networks to 3D representations of time-varying signatures and achieved a classification accuracy of 97%, with a human detection rate of 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信