富文本网络中图形卷积网络的自适应语义结构

Zhizhi Yu, Di Jin, Ziyang Liu, Dongxiao He, Xiao Wang, Hanghang Tong, Jiawei Han
{"title":"富文本网络中图形卷积网络的自适应语义结构","authors":"Zhizhi Yu, Di Jin, Ziyang Liu, Dongxiao He, Xiao Wang, Hanghang Tong, Jiawei Han","doi":"10.1109/ICDM51629.2021.00095","DOIUrl":null,"url":null,"abstract":"Graph Neural Networks (GNNs) have demonstrated great power in many network analytical tasks. However, graphs (i.e., networks) in the real world are usually text-rich, implying that valuable semantic information needs to be carefully considered. Existing GNNs for text-rich networks typically treat text as attribute words alone, which inevitably leads to the loss of important semantic structures, limiting the representation capability of GNNs. In this paper, we propose an end-to-end adaptive semantic architecture of graph convolutional networks, namely AS-GCN, which unifies neural topic model and graph convolutional networks, for text-rich network representation. Specifically, we utilize a neural topic model to extract the global topic semantics, and accordingly augment the original text-rich network into a tri-typed heterogeneous network, capturing both the local word-sequence semantic structure and the global topic semantic structure from text. We then design an effective semantic-aware propagation of information by introducing a discriminative convolution mechanism. We further propose two strategies, that is, distribution sharing and joint training, to adaptively generate a proper network structure based on the learning objective to improve network representation. Extensive experiments on text-rich networks illustrate that our new architecture outperforms the state-of-the-art methods by a significant improvement. Meanwhile, this architecture can also be applied to e-commerce search scenes, and experiments on a real e-commerce problem from JD further demonstrate the superiority of the proposed architecture over the baselines.","PeriodicalId":320970,"journal":{"name":"2021 IEEE International Conference on Data Mining (ICDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"AS-GCN: Adaptive Semantic Architecture of Graph Convolutional Networks for Text-Rich Networks\",\"authors\":\"Zhizhi Yu, Di Jin, Ziyang Liu, Dongxiao He, Xiao Wang, Hanghang Tong, Jiawei Han\",\"doi\":\"10.1109/ICDM51629.2021.00095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph Neural Networks (GNNs) have demonstrated great power in many network analytical tasks. However, graphs (i.e., networks) in the real world are usually text-rich, implying that valuable semantic information needs to be carefully considered. Existing GNNs for text-rich networks typically treat text as attribute words alone, which inevitably leads to the loss of important semantic structures, limiting the representation capability of GNNs. In this paper, we propose an end-to-end adaptive semantic architecture of graph convolutional networks, namely AS-GCN, which unifies neural topic model and graph convolutional networks, for text-rich network representation. Specifically, we utilize a neural topic model to extract the global topic semantics, and accordingly augment the original text-rich network into a tri-typed heterogeneous network, capturing both the local word-sequence semantic structure and the global topic semantic structure from text. We then design an effective semantic-aware propagation of information by introducing a discriminative convolution mechanism. We further propose two strategies, that is, distribution sharing and joint training, to adaptively generate a proper network structure based on the learning objective to improve network representation. Extensive experiments on text-rich networks illustrate that our new architecture outperforms the state-of-the-art methods by a significant improvement. Meanwhile, this architecture can also be applied to e-commerce search scenes, and experiments on a real e-commerce problem from JD further demonstrate the superiority of the proposed architecture over the baselines.\",\"PeriodicalId\":320970,\"journal\":{\"name\":\"2021 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM51629.2021.00095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM51629.2021.00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

图神经网络(gnn)在许多网络分析任务中显示出强大的功能。然而,现实世界中的图(即网络)通常是文本丰富的,这意味着需要仔细考虑有价值的语义信息。现有的用于富文本网络的gnn通常只将文本作为属性词,这不可避免地导致了重要语义结构的丢失,限制了gnn的表示能力。本文提出了一种结合神经主题模型和图卷积网络的端到端自适应图卷积网络语义架构AS-GCN,用于富文本网络表示。具体而言,我们利用神经主题模型提取全局主题语义,并相应地将原始的富文本网络增强为三类型异构网络,从文本中捕获局部词序列语义结构和全局主题语义结构。然后,我们通过引入判别卷积机制设计了一种有效的语义感知信息传播。我们进一步提出了分布共享和联合训练两种策略,根据学习目标自适应生成合适的网络结构,以提高网络表征。在文本丰富的网络上进行的大量实验表明,我们的新架构在性能上有了显著的改进,超过了最先进的方法。同时,该架构也可以应用于电子商务搜索场景,并在JD的实际电子商务问题上进行了实验,进一步证明了该架构相对于基线的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AS-GCN: Adaptive Semantic Architecture of Graph Convolutional Networks for Text-Rich Networks
Graph Neural Networks (GNNs) have demonstrated great power in many network analytical tasks. However, graphs (i.e., networks) in the real world are usually text-rich, implying that valuable semantic information needs to be carefully considered. Existing GNNs for text-rich networks typically treat text as attribute words alone, which inevitably leads to the loss of important semantic structures, limiting the representation capability of GNNs. In this paper, we propose an end-to-end adaptive semantic architecture of graph convolutional networks, namely AS-GCN, which unifies neural topic model and graph convolutional networks, for text-rich network representation. Specifically, we utilize a neural topic model to extract the global topic semantics, and accordingly augment the original text-rich network into a tri-typed heterogeneous network, capturing both the local word-sequence semantic structure and the global topic semantic structure from text. We then design an effective semantic-aware propagation of information by introducing a discriminative convolution mechanism. We further propose two strategies, that is, distribution sharing and joint training, to adaptively generate a proper network structure based on the learning objective to improve network representation. Extensive experiments on text-rich networks illustrate that our new architecture outperforms the state-of-the-art methods by a significant improvement. Meanwhile, this architecture can also be applied to e-commerce search scenes, and experiments on a real e-commerce problem from JD further demonstrate the superiority of the proposed architecture over the baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信