{"title":"有保证采样曲面的一个有效条件","authors":"J. Boissonnat, S. Oudot","doi":"10.2312/SM.20041381","DOIUrl":null,"url":null,"abstract":"The notion of ε-sample, as introduced by Amenta and Bern, has proven to be a key concept in the theory of sampled surfaces. Of particular interest is the fact that, if E is an ε-sample of a smooth surface S for a sufficiently small ε, then the Delaunay triangulation of E restricted to S is a good approximation of S, both in a topological and in a geometric sense. Hence, if one can construct an ε-sample, one also gets a good approximation of the surface. Moreover, correct reconstruction is ensured by various algorithms.In this paper, we introduce the notion of loose ε-sample. We show that the set of loose ε-samples contains and is asymptotically identical to the set of ε-samples. The main advantage of loose ε-samples over ε-samples is that they are easier to check and to construct. We also present a simple algorithm that constructs provably good surface samples and meshes.","PeriodicalId":405863,"journal":{"name":"ACM Symposium on Solid Modeling and Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"An effective condition for sampling surfaces with guarantees\",\"authors\":\"J. Boissonnat, S. Oudot\",\"doi\":\"10.2312/SM.20041381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of ε-sample, as introduced by Amenta and Bern, has proven to be a key concept in the theory of sampled surfaces. Of particular interest is the fact that, if E is an ε-sample of a smooth surface S for a sufficiently small ε, then the Delaunay triangulation of E restricted to S is a good approximation of S, both in a topological and in a geometric sense. Hence, if one can construct an ε-sample, one also gets a good approximation of the surface. Moreover, correct reconstruction is ensured by various algorithms.In this paper, we introduce the notion of loose ε-sample. We show that the set of loose ε-samples contains and is asymptotically identical to the set of ε-samples. The main advantage of loose ε-samples over ε-samples is that they are easier to check and to construct. We also present a simple algorithm that constructs provably good surface samples and meshes.\",\"PeriodicalId\":405863,\"journal\":{\"name\":\"ACM Symposium on Solid Modeling and Applications\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Symposium on Solid Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/SM.20041381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Solid Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/SM.20041381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An effective condition for sampling surfaces with guarantees
The notion of ε-sample, as introduced by Amenta and Bern, has proven to be a key concept in the theory of sampled surfaces. Of particular interest is the fact that, if E is an ε-sample of a smooth surface S for a sufficiently small ε, then the Delaunay triangulation of E restricted to S is a good approximation of S, both in a topological and in a geometric sense. Hence, if one can construct an ε-sample, one also gets a good approximation of the surface. Moreover, correct reconstruction is ensured by various algorithms.In this paper, we introduce the notion of loose ε-sample. We show that the set of loose ε-samples contains and is asymptotically identical to the set of ε-samples. The main advantage of loose ε-samples over ε-samples is that they are easier to check and to construct. We also present a simple algorithm that constructs provably good surface samples and meshes.