{"title":"基于响应内核的便携式多计算机通信库","authors":"A. Skjellum, A. Leung","doi":"10.1109/DMCC.1990.556280","DOIUrl":null,"url":null,"abstract":"Sophisticated multicomputer applications require efficient, \nflexible, convenient underlying communication primitives. \nIn the work described here, Zipcode, a new, portable communication library, has been designed, developed, articulated and evaluated. The primary goals were: high efficiency compared to lowest-level primitives, user-definable message receipt selectivity, as well as abstraction of collections of processes and message selectivity to allow multiple, independently conceived libraries to work together without conflict. \n \nZipcode works atop the Caltech Reactive Kernel, a portable, minimalistic multicomputer node operating system. Presently, the Reactive Kernel is implemented for Intel iPSC/1, iPSC/2, and Symult s2010 multicomputers and emulated on shared-memory computers as well as networks of Sun workstations. Consequently, Zipcode addresses an equally wide audience, and can plausibly be run in other environments.","PeriodicalId":204431,"journal":{"name":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"A Portable Multicomputer Communication Library atop the Reactive Kernel\",\"authors\":\"A. Skjellum, A. Leung\",\"doi\":\"10.1109/DMCC.1990.556280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sophisticated multicomputer applications require efficient, \\nflexible, convenient underlying communication primitives. \\nIn the work described here, Zipcode, a new, portable communication library, has been designed, developed, articulated and evaluated. The primary goals were: high efficiency compared to lowest-level primitives, user-definable message receipt selectivity, as well as abstraction of collections of processes and message selectivity to allow multiple, independently conceived libraries to work together without conflict. \\n \\nZipcode works atop the Caltech Reactive Kernel, a portable, minimalistic multicomputer node operating system. Presently, the Reactive Kernel is implemented for Intel iPSC/1, iPSC/2, and Symult s2010 multicomputers and emulated on shared-memory computers as well as networks of Sun workstations. Consequently, Zipcode addresses an equally wide audience, and can plausibly be run in other environments.\",\"PeriodicalId\":204431,\"journal\":{\"name\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMCC.1990.556280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1990.556280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Portable Multicomputer Communication Library atop the Reactive Kernel
Sophisticated multicomputer applications require efficient,
flexible, convenient underlying communication primitives.
In the work described here, Zipcode, a new, portable communication library, has been designed, developed, articulated and evaluated. The primary goals were: high efficiency compared to lowest-level primitives, user-definable message receipt selectivity, as well as abstraction of collections of processes and message selectivity to allow multiple, independently conceived libraries to work together without conflict.
Zipcode works atop the Caltech Reactive Kernel, a portable, minimalistic multicomputer node operating system. Presently, the Reactive Kernel is implemented for Intel iPSC/1, iPSC/2, and Symult s2010 multicomputers and emulated on shared-memory computers as well as networks of Sun workstations. Consequently, Zipcode addresses an equally wide audience, and can plausibly be run in other environments.