基于遗传算法的多转子性能优化

Umang Agarwal
{"title":"基于遗传算法的多转子性能优化","authors":"Umang Agarwal","doi":"10.1109/ISED.2017.8303947","DOIUrl":null,"url":null,"abstract":"Designing and implementing a multirotor imposes some challenges: limited flight time and take-off mass, motor/propeller matching and unsteady dynamics. In this paper, these challenges are addressed by multi-objective optimization of a multiro tor's operational parameters like flight velocity, flight altitude and motor/propeller rpm, and physical parameters like motor, battery and propeller geometry. New contributions are establishing a functional dependence of rotor thrust and power coefficients on design parameters, and incorporating aerodynamic effects within the optimization environment. Additionally, the rationality of optimization is enhanced by modeling physical parameters as discrete variables. The numerical results indicate that Genetic Algorithm reliably finds an optimum design, and improves flight time and maximum take-off mass by 35%.","PeriodicalId":147019,"journal":{"name":"2017 7th International Symposium on Embedded Computing and System Design (ISED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multirotor performance optimization using genetic algorithm\",\"authors\":\"Umang Agarwal\",\"doi\":\"10.1109/ISED.2017.8303947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing and implementing a multirotor imposes some challenges: limited flight time and take-off mass, motor/propeller matching and unsteady dynamics. In this paper, these challenges are addressed by multi-objective optimization of a multiro tor's operational parameters like flight velocity, flight altitude and motor/propeller rpm, and physical parameters like motor, battery and propeller geometry. New contributions are establishing a functional dependence of rotor thrust and power coefficients on design parameters, and incorporating aerodynamic effects within the optimization environment. Additionally, the rationality of optimization is enhanced by modeling physical parameters as discrete variables. The numerical results indicate that Genetic Algorithm reliably finds an optimum design, and improves flight time and maximum take-off mass by 35%.\",\"PeriodicalId\":147019,\"journal\":{\"name\":\"2017 7th International Symposium on Embedded Computing and System Design (ISED)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Symposium on Embedded Computing and System Design (ISED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISED.2017.8303947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Symposium on Embedded Computing and System Design (ISED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISED.2017.8303947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多旋翼的设计和实现面临着飞行时间和起飞质量限制、发动机/螺旋桨匹配和非定常动力学等诸多挑战。本文通过多目标优化多旋翼机的操作参数(如飞行速度、飞行高度、电机/螺旋桨转速)和物理参数(如电机、电池和螺旋桨几何形状)来解决这些挑战。新的贡献是建立了转子推力和功率系数对设计参数的函数依赖关系,并在优化环境中纳入了气动效应。此外,将物理参数建模为离散变量,提高了优化的合理性。数值计算结果表明,遗传算法能可靠地找到最优设计方案,使飞机的飞行时间和最大起飞质量提高35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multirotor performance optimization using genetic algorithm
Designing and implementing a multirotor imposes some challenges: limited flight time and take-off mass, motor/propeller matching and unsteady dynamics. In this paper, these challenges are addressed by multi-objective optimization of a multiro tor's operational parameters like flight velocity, flight altitude and motor/propeller rpm, and physical parameters like motor, battery and propeller geometry. New contributions are establishing a functional dependence of rotor thrust and power coefficients on design parameters, and incorporating aerodynamic effects within the optimization environment. Additionally, the rationality of optimization is enhanced by modeling physical parameters as discrete variables. The numerical results indicate that Genetic Algorithm reliably finds an optimum design, and improves flight time and maximum take-off mass by 35%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信