{"title":"基于正则化的Bootstrap排名模型:在所有收入水平的经济体中识别医疗保健指标","authors":"E. Thompson, Ahmad M. Talafha","doi":"10.16929/as/2020.2431.167","DOIUrl":null,"url":null,"abstract":"This study considers the problem of uncertainty of concurrent variables selection among a potential set of healthcare expenditure predictors. It evaluates two regularization (shrinkage) methods: Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net (ENET). To improve the accuracy of identifying important and relevant predictors of healthcare cost, the present study proposes a new methodology in the form of a bootstrapped-regularized regression with percentile rankings. A simulation study under various scenarios was implemented to learn the performance of the proposed methodology. The proposed methodology was applied to healthcare expenditure data for all level income economies: lower-income, lower-middle-income, upper-middle-income, and high-income.","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"106 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularization-Based Bootstrap Ranking Model: Identifying Healthcare Indicators Among All Level Income Economies\",\"authors\":\"E. Thompson, Ahmad M. Talafha\",\"doi\":\"10.16929/as/2020.2431.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study considers the problem of uncertainty of concurrent variables selection among a potential set of healthcare expenditure predictors. It evaluates two regularization (shrinkage) methods: Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net (ENET). To improve the accuracy of identifying important and relevant predictors of healthcare cost, the present study proposes a new methodology in the form of a bootstrapped-regularized regression with percentile rankings. A simulation study under various scenarios was implemented to learn the performance of the proposed methodology. The proposed methodology was applied to healthcare expenditure data for all level income economies: lower-income, lower-middle-income, upper-middle-income, and high-income.\",\"PeriodicalId\":430341,\"journal\":{\"name\":\"Afrika Statistika\",\"volume\":\"106 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16929/as/2020.2431.167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/as/2020.2431.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regularization-Based Bootstrap Ranking Model: Identifying Healthcare Indicators Among All Level Income Economies
This study considers the problem of uncertainty of concurrent variables selection among a potential set of healthcare expenditure predictors. It evaluates two regularization (shrinkage) methods: Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net (ENET). To improve the accuracy of identifying important and relevant predictors of healthcare cost, the present study proposes a new methodology in the form of a bootstrapped-regularized regression with percentile rankings. A simulation study under various scenarios was implemented to learn the performance of the proposed methodology. The proposed methodology was applied to healthcare expenditure data for all level income economies: lower-income, lower-middle-income, upper-middle-income, and high-income.