选择性关注环境学习系统

J. D. Johnson, T. A. Grogan
{"title":"选择性关注环境学习系统","authors":"J. D. Johnson, T. A. Grogan","doi":"10.1109/ICSYSE.1991.161107","DOIUrl":null,"url":null,"abstract":"The selectively attentive environmental learning system (SAELS), that is capable of formulating decision policies while operating under terminally applied, minimally descriptive, reinforcement feedback is discussed. This type of reinforcement signals only that the generated policy is correct, or incorrect, and provides no information on the closeness of the generated policy to the correct policy. SAELS uses the drive-reinforcement neuronal model that, through the predictive qualities of its learning, is capable of solving the temporal credit assignment problem that arises under these reinforcement conditions. It is shown that SAELS can generate the necessary decision policy to maneuver through a multi-intersection maze.<<ETX>>","PeriodicalId":250037,"journal":{"name":"IEEE 1991 International Conference on Systems Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The selectively attentive environmental learning system\",\"authors\":\"J. D. Johnson, T. A. Grogan\",\"doi\":\"10.1109/ICSYSE.1991.161107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The selectively attentive environmental learning system (SAELS), that is capable of formulating decision policies while operating under terminally applied, minimally descriptive, reinforcement feedback is discussed. This type of reinforcement signals only that the generated policy is correct, or incorrect, and provides no information on the closeness of the generated policy to the correct policy. SAELS uses the drive-reinforcement neuronal model that, through the predictive qualities of its learning, is capable of solving the temporal credit assignment problem that arises under these reinforcement conditions. It is shown that SAELS can generate the necessary decision policy to maneuver through a multi-intersection maze.<<ETX>>\",\"PeriodicalId\":250037,\"journal\":{\"name\":\"IEEE 1991 International Conference on Systems Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 1991 International Conference on Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSYSE.1991.161107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1991 International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1991.161107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

选择性关注环境学习系统(SAELS),能够制定决策政策,同时在终端应用,最低限度的描述性,强化反馈操作进行了讨论。这种类型的强化只表明生成的策略是正确的或不正确的,并且不提供关于生成的策略与正确策略的接近程度的信息。SAELS使用驱动强化神经元模型,通过其学习的预测特性,能够解决在这些强化条件下出现的时间信用分配问题。结果表明,该算法能够生成必要的决策策略,以通过多交叉口迷宫
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The selectively attentive environmental learning system
The selectively attentive environmental learning system (SAELS), that is capable of formulating decision policies while operating under terminally applied, minimally descriptive, reinforcement feedback is discussed. This type of reinforcement signals only that the generated policy is correct, or incorrect, and provides no information on the closeness of the generated policy to the correct policy. SAELS uses the drive-reinforcement neuronal model that, through the predictive qualities of its learning, is capable of solving the temporal credit assignment problem that arises under these reinforcement conditions. It is shown that SAELS can generate the necessary decision policy to maneuver through a multi-intersection maze.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信