基于集成学习方法的电网稳定性评估与分类

M. Massaoudi, H. Abu-Rub, S. Refaat, I. Chihi, F. Oueslati
{"title":"基于集成学习方法的电网稳定性评估与分类","authors":"M. Massaoudi, H. Abu-Rub, S. Refaat, I. Chihi, F. Oueslati","doi":"10.1109/kpec51835.2021.9446197","DOIUrl":null,"url":null,"abstract":"This article proposes an accurate Stacking Ensemble Classifier (SEC) for decentral Smart Grid control Stability Prediction. The proposed SEC consists of stacking two base classifiers; specifically, eXtreme Gradient Boosting machine (XGBoost) and Categorical boosting (Catboost), and one meta-classier, Light Gradient Boosting Machine (LGBM). The proposed technique shows an excellent ability to classify the grid instabilities using a supervised learning approach accurately. Extensive experiments have been conducted, demonstrating the superiority of the proposed SEC model over multiple benchmarks. In summary, this paper's main contributions consist of 1) proposing a new model-based ensemble learning 2) tailoring an efficient data-driven technique for grid stability detection and classification. Numerical results are to validate the proposed model's high effectiveness.","PeriodicalId":392538,"journal":{"name":"2021 IEEE Kansas Power and Energy Conference (KPEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An Effective Ensemble Learning approach-Based Grid Stability Assessment and Classification\",\"authors\":\"M. Massaoudi, H. Abu-Rub, S. Refaat, I. Chihi, F. Oueslati\",\"doi\":\"10.1109/kpec51835.2021.9446197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an accurate Stacking Ensemble Classifier (SEC) for decentral Smart Grid control Stability Prediction. The proposed SEC consists of stacking two base classifiers; specifically, eXtreme Gradient Boosting machine (XGBoost) and Categorical boosting (Catboost), and one meta-classier, Light Gradient Boosting Machine (LGBM). The proposed technique shows an excellent ability to classify the grid instabilities using a supervised learning approach accurately. Extensive experiments have been conducted, demonstrating the superiority of the proposed SEC model over multiple benchmarks. In summary, this paper's main contributions consist of 1) proposing a new model-based ensemble learning 2) tailoring an efficient data-driven technique for grid stability detection and classification. Numerical results are to validate the proposed model's high effectiveness.\",\"PeriodicalId\":392538,\"journal\":{\"name\":\"2021 IEEE Kansas Power and Energy Conference (KPEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Kansas Power and Energy Conference (KPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/kpec51835.2021.9446197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Kansas Power and Energy Conference (KPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/kpec51835.2021.9446197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种用于分散智能电网控制稳定性预测的精确叠加集成分类器(SEC)。拟议的SEC包括堆叠两个基本分类器;具体来说,是极端梯度增强机(XGBoost)和分类增强机(Catboost),以及一个元分类器,光梯度增强机(LGBM)。该方法使用监督学习方法对网格不稳定性进行了准确的分类。已经进行了大量的实验,证明了所提出的SEC模型优于多个基准。综上所述,本文的主要贡献包括:1)提出了一种新的基于模型的集成学习方法;2)为电网稳定性检测和分类定制了一种高效的数据驱动技术。数值结果验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Effective Ensemble Learning approach-Based Grid Stability Assessment and Classification
This article proposes an accurate Stacking Ensemble Classifier (SEC) for decentral Smart Grid control Stability Prediction. The proposed SEC consists of stacking two base classifiers; specifically, eXtreme Gradient Boosting machine (XGBoost) and Categorical boosting (Catboost), and one meta-classier, Light Gradient Boosting Machine (LGBM). The proposed technique shows an excellent ability to classify the grid instabilities using a supervised learning approach accurately. Extensive experiments have been conducted, demonstrating the superiority of the proposed SEC model over multiple benchmarks. In summary, this paper's main contributions consist of 1) proposing a new model-based ensemble learning 2) tailoring an efficient data-driven technique for grid stability detection and classification. Numerical results are to validate the proposed model's high effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信