基于微调动态车辆排放模型的交通环境评价

W. Lei, Xiaoliang Ma, Hui Chen
{"title":"基于微调动态车辆排放模型的交通环境评价","authors":"W. Lei, Xiaoliang Ma, Hui Chen","doi":"10.1109/ITSC.2010.5625195","DOIUrl":null,"url":null,"abstract":"In order to assess environmental impacts of local traffic flow, a two-stage parameter tuning approach is proposed for recalibration of the Comprehensive Modal Emission Model (CMEM) using on-road emission measurements collected in Chinese cities. Based on the procedure comprising of grid search and nonlinear simplex optimization, the fuel- and emission-related parameters in the model are estimated to minimize the Mean Square Error (MSE) between model outputs and real measurements. In addition, a regression-based emission model is calibrated using the same data samples to compare performance. It is shown from the numerical results that the tuning process is able of improving the model prediction accuracy, especially concerning the CO emission, when comparing with the original CMEM model and the regression-based model. In addition, the emission models are, after the tuning process, applied together with a traffic simulation model to evaluate dynamic environmental effects of traffic in a case study.","PeriodicalId":176645,"journal":{"name":"13th International IEEE Conference on Intelligent Transportation Systems","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment of traffic environment using fine-tuned dynamic vehicle emission models\",\"authors\":\"W. Lei, Xiaoliang Ma, Hui Chen\",\"doi\":\"10.1109/ITSC.2010.5625195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to assess environmental impacts of local traffic flow, a two-stage parameter tuning approach is proposed for recalibration of the Comprehensive Modal Emission Model (CMEM) using on-road emission measurements collected in Chinese cities. Based on the procedure comprising of grid search and nonlinear simplex optimization, the fuel- and emission-related parameters in the model are estimated to minimize the Mean Square Error (MSE) between model outputs and real measurements. In addition, a regression-based emission model is calibrated using the same data samples to compare performance. It is shown from the numerical results that the tuning process is able of improving the model prediction accuracy, especially concerning the CO emission, when comparing with the original CMEM model and the regression-based model. In addition, the emission models are, after the tuning process, applied together with a traffic simulation model to evaluate dynamic environmental effects of traffic in a case study.\",\"PeriodicalId\":176645,\"journal\":{\"name\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2010.5625195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th International IEEE Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2010.5625195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了评估局部交通流的环境影响,提出了一种两阶段参数调整方法,利用中国城市道路排放测量数据对综合模态排放模型(CMEM)进行重新校准。基于网格搜索和非线性单纯形优化,对模型中的燃料和排放相关参数进行估计,使模型输出与实际测量值之间的均方误差(MSE)最小。此外,使用相同的数据样本校准了基于回归的排放模型,以比较性能。数值结果表明,与原始CMEM模型和基于回归的模型相比,调整过程能够提高模型的预测精度,特别是对CO排放的预测精度。此外,在调整后的排放模型与交通仿真模型一起应用于交通动态环境影响评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of traffic environment using fine-tuned dynamic vehicle emission models
In order to assess environmental impacts of local traffic flow, a two-stage parameter tuning approach is proposed for recalibration of the Comprehensive Modal Emission Model (CMEM) using on-road emission measurements collected in Chinese cities. Based on the procedure comprising of grid search and nonlinear simplex optimization, the fuel- and emission-related parameters in the model are estimated to minimize the Mean Square Error (MSE) between model outputs and real measurements. In addition, a regression-based emission model is calibrated using the same data samples to compare performance. It is shown from the numerical results that the tuning process is able of improving the model prediction accuracy, especially concerning the CO emission, when comparing with the original CMEM model and the regression-based model. In addition, the emission models are, after the tuning process, applied together with a traffic simulation model to evaluate dynamic environmental effects of traffic in a case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信