聚集带有扩展标签的网页

Li Zhao, Lianhe Yang, Yinghuang Liang
{"title":"聚集带有扩展标签的网页","authors":"Li Zhao, Lianhe Yang, Yinghuang Liang","doi":"10.1109/ICCIAUTOM.2011.6183985","DOIUrl":null,"url":null,"abstract":"Social annotations e.g. tags are good descriptors of web page semantics, which have large potential for web document clustering. However, most web pages have few tags. The sparsity seriously affects the clustering performance. To overcome the problem, we incorporate user-related tag context, a specially constructed tag set, to improve the topic representation and estimation for documents. Experimental results demonstrate the nice effect of tag context on addressing the sparsity problem. Compared to clustering based on non-expanded tags, our approach achieves a statistically significant increase of 26.5% to 47.4% on F1 score.","PeriodicalId":177039,"journal":{"name":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering web pages with expanded tags\",\"authors\":\"Li Zhao, Lianhe Yang, Yinghuang Liang\",\"doi\":\"10.1109/ICCIAUTOM.2011.6183985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social annotations e.g. tags are good descriptors of web page semantics, which have large potential for web document clustering. However, most web pages have few tags. The sparsity seriously affects the clustering performance. To overcome the problem, we incorporate user-related tag context, a specially constructed tag set, to improve the topic representation and estimation for documents. Experimental results demonstrate the nice effect of tag context on addressing the sparsity problem. Compared to clustering based on non-expanded tags, our approach achieves a statistically significant increase of 26.5% to 47.4% on F1 score.\",\"PeriodicalId\":177039,\"journal\":{\"name\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2011.6183985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Control, Instrumentation and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6183985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社交注释(如标签)是网页语义的良好描述符,在web文档聚类方面具有很大的潜力。然而,大多数网页只有很少的标签。稀疏性严重影响集群性能。为了克服这个问题,我们结合了用户相关的标签上下文,一个特殊构造的标签集,以改进文档的主题表示和估计。实验结果证明了标签上下文在解决稀疏性问题上的良好效果。与基于未扩展标签的聚类相比,我们的方法在F1得分上实现了26.5%到47.4%的统计学显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering web pages with expanded tags
Social annotations e.g. tags are good descriptors of web page semantics, which have large potential for web document clustering. However, most web pages have few tags. The sparsity seriously affects the clustering performance. To overcome the problem, we incorporate user-related tag context, a specially constructed tag set, to improve the topic representation and estimation for documents. Experimental results demonstrate the nice effect of tag context on addressing the sparsity problem. Compared to clustering based on non-expanded tags, our approach achieves a statistically significant increase of 26.5% to 47.4% on F1 score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信