{"title":"基于邻域嵌入的视觉基元流形图像幻觉","authors":"Wei-liang Fan, D. Yeung","doi":"10.1109/CVPR.2007.383001","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel learning-based method for image hallucination, with image super-resolution being a specific application that we focus on here. Given a low-resolution image, its underlying higher-resolution details are synthesized based on a set of training images. In order to build a compact yet descriptive training set, we investigate the characteristic local structures contained in large volumes of small image patches. Inspired by progress in manifold learning research, we take the assumption that small image patches in the low-resolution and high-resolution images form manifolds with similar local geometry in the corresponding image feature spaces. This assumption leads to a super-resolution approach which reconstructs the feature vector corresponding to an image patch by its neighbors in the feature space. In addition, the residual errors associated with the reconstructed image patches are also estimated to compensate for the information loss in the local averaging process. Experimental results show that our hallucination method can synthesize higher-quality images compared with other methods.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":"{\"title\":\"Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds\",\"authors\":\"Wei-liang Fan, D. Yeung\",\"doi\":\"10.1109/CVPR.2007.383001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel learning-based method for image hallucination, with image super-resolution being a specific application that we focus on here. Given a low-resolution image, its underlying higher-resolution details are synthesized based on a set of training images. In order to build a compact yet descriptive training set, we investigate the characteristic local structures contained in large volumes of small image patches. Inspired by progress in manifold learning research, we take the assumption that small image patches in the low-resolution and high-resolution images form manifolds with similar local geometry in the corresponding image feature spaces. This assumption leads to a super-resolution approach which reconstructs the feature vector corresponding to an image patch by its neighbors in the feature space. In addition, the residual errors associated with the reconstructed image patches are also estimated to compensate for the information loss in the local averaging process. Experimental results show that our hallucination method can synthesize higher-quality images compared with other methods.\",\"PeriodicalId\":351008,\"journal\":{\"name\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2007.383001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds
In this paper, we propose a novel learning-based method for image hallucination, with image super-resolution being a specific application that we focus on here. Given a low-resolution image, its underlying higher-resolution details are synthesized based on a set of training images. In order to build a compact yet descriptive training set, we investigate the characteristic local structures contained in large volumes of small image patches. Inspired by progress in manifold learning research, we take the assumption that small image patches in the low-resolution and high-resolution images form manifolds with similar local geometry in the corresponding image feature spaces. This assumption leads to a super-resolution approach which reconstructs the feature vector corresponding to an image patch by its neighbors in the feature space. In addition, the residual errors associated with the reconstructed image patches are also estimated to compensate for the information loss in the local averaging process. Experimental results show that our hallucination method can synthesize higher-quality images compared with other methods.