表面束截面

J. Hillman
{"title":"表面束截面","authors":"J. Hillman","doi":"10.2140/gtm.2015.19.1","DOIUrl":null,"url":null,"abstract":"A bundle with base $B$ and fibre $F$ aspherical closed surfaces has a section if and only if the action $:\\pi_1(B)\\to{Out}(\\pi_1(F))$ factors through $Aut(\\pi_1(F))$ and a cohomology class is 0. We simplify and make more explicit the latter condition. We also show that the transgression $d^2_{2,0}$ in the homology LHS spectral sequence of a central extension is evaluation of the extension class. Examples with hyperbolic fibre and no section (based on ideas of Endo) added.","PeriodicalId":115248,"journal":{"name":"Geometry and Topology Monographs","volume":"02 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Sections of surface bundles\",\"authors\":\"J. Hillman\",\"doi\":\"10.2140/gtm.2015.19.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bundle with base $B$ and fibre $F$ aspherical closed surfaces has a section if and only if the action $:\\\\pi_1(B)\\\\to{Out}(\\\\pi_1(F))$ factors through $Aut(\\\\pi_1(F))$ and a cohomology class is 0. We simplify and make more explicit the latter condition. We also show that the transgression $d^2_{2,0}$ in the homology LHS spectral sequence of a central extension is evaluation of the extension class. Examples with hyperbolic fibre and no section (based on ideas of Endo) added.\",\"PeriodicalId\":115248,\"journal\":{\"name\":\"Geometry and Topology Monographs\",\"volume\":\"02 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry and Topology Monographs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gtm.2015.19.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry and Topology Monographs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gtm.2015.19.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

当且仅当作用$:\pi_1(B)\到{Out}(\pi_1(F))$因子通过$Aut(\pi_1(F))$且上同调类为0时,基$B$和纤维$F$的非球面闭合曲面束具有截面。我们对后一个条件进行了简化,使之更加明确。我们还证明了中心可拓的同调LHS谱序列中的越界$d^2_{2,0}$是可拓类的求值。添加了双曲纤维和无截面(基于远藤的想法)的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sections of surface bundles
A bundle with base $B$ and fibre $F$ aspherical closed surfaces has a section if and only if the action $:\pi_1(B)\to{Out}(\pi_1(F))$ factors through $Aut(\pi_1(F))$ and a cohomology class is 0. We simplify and make more explicit the latter condition. We also show that the transgression $d^2_{2,0}$ in the homology LHS spectral sequence of a central extension is evaluation of the extension class. Examples with hyperbolic fibre and no section (based on ideas of Endo) added.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信