离散时间不确定系统的非线性滑动曲面

B. Bandyopadhyay, Fulwani Deepak
{"title":"离散时间不确定系统的非线性滑动曲面","authors":"B. Bandyopadhyay, Fulwani Deepak","doi":"10.1109/VSS.2010.5544658","DOIUrl":null,"url":null,"abstract":"This paper proposes a discretization behavior of nonlinear sliding surface based algorithms. Recently nonlinear surfaces are proposed by the authors to improve transient performance of continuous and discrete-time uncertain systems. The nonlinear surface changes system's closed loop damping ratio as output approaches the setpoint. In this paper we propose a nonlinear surface for the system represented by delta operator approach which unifies our continuous-time and discrete-time results.","PeriodicalId":407705,"journal":{"name":"2010 11th International Workshop on Variable Structure Systems (VSS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A nonlinear sliding surface for discrete-time uncertain systems\",\"authors\":\"B. Bandyopadhyay, Fulwani Deepak\",\"doi\":\"10.1109/VSS.2010.5544658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a discretization behavior of nonlinear sliding surface based algorithms. Recently nonlinear surfaces are proposed by the authors to improve transient performance of continuous and discrete-time uncertain systems. The nonlinear surface changes system's closed loop damping ratio as output approaches the setpoint. In this paper we propose a nonlinear surface for the system represented by delta operator approach which unifies our continuous-time and discrete-time results.\",\"PeriodicalId\":407705,\"journal\":{\"name\":\"2010 11th International Workshop on Variable Structure Systems (VSS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Workshop on Variable Structure Systems (VSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSS.2010.5544658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Workshop on Variable Structure Systems (VSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.2010.5544658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于非线性滑动面的离散化算法。近年来,作者提出了非线性曲面来改善连续和离散不确定系统的暂态性能。当输出接近设定值时,非线性曲面改变了系统的闭环阻尼比。本文提出了用delta算子方法表示的系统的非线性曲面,它统一了连续时间和离散时间的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nonlinear sliding surface for discrete-time uncertain systems
This paper proposes a discretization behavior of nonlinear sliding surface based algorithms. Recently nonlinear surfaces are proposed by the authors to improve transient performance of continuous and discrete-time uncertain systems. The nonlinear surface changes system's closed loop damping ratio as output approaches the setpoint. In this paper we propose a nonlinear surface for the system represented by delta operator approach which unifies our continuous-time and discrete-time results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信