谐波固体

R. Swendsen
{"title":"谐波固体","authors":"R. Swendsen","doi":"10.1093/ACPROF:OSO/9780199646944.003.0025","DOIUrl":null,"url":null,"abstract":"In Chapter 26 we return to calculating the contributions to the specific heat of a crystal from the vibrations of the atoms. The vibrations of a model of a solid, for which the interactions are quadratic in form, is investigated. Calculations are restricted to one dimension for simplicity in the derivations of the Fourier modes and the equations of motion. Both pinned and periodic boundary conditions are discussed. The representation of the Hamiltonian in terms of normal modes and the solution in terms of the equations of motion are derived. The Debye approximation is then introduced for three-dimensional systems.","PeriodicalId":102491,"journal":{"name":"An Introduction to Statistical Mechanics and Thermodynamics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Harmonic Solid\",\"authors\":\"R. Swendsen\",\"doi\":\"10.1093/ACPROF:OSO/9780199646944.003.0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Chapter 26 we return to calculating the contributions to the specific heat of a crystal from the vibrations of the atoms. The vibrations of a model of a solid, for which the interactions are quadratic in form, is investigated. Calculations are restricted to one dimension for simplicity in the derivations of the Fourier modes and the equations of motion. Both pinned and periodic boundary conditions are discussed. The representation of the Hamiltonian in terms of normal modes and the solution in terms of the equations of motion are derived. The Debye approximation is then introduced for three-dimensional systems.\",\"PeriodicalId\":102491,\"journal\":{\"name\":\"An Introduction to Statistical Mechanics and Thermodynamics\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"An Introduction to Statistical Mechanics and Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ACPROF:OSO/9780199646944.003.0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"An Introduction to Statistical Mechanics and Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ACPROF:OSO/9780199646944.003.0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在第26章,我们回到计算原子振动对晶体比热的贡献。研究了相互作用为二次型的固体模型的振动问题。为了简化傅里叶模式和运动方程的推导,计算被限制在一维范围内。讨论了固定边界条件和周期边界条件。导出了用正模态表示的哈密顿量和用运动方程表示的解。然后对三维系统引入德拜近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Harmonic Solid
In Chapter 26 we return to calculating the contributions to the specific heat of a crystal from the vibrations of the atoms. The vibrations of a model of a solid, for which the interactions are quadratic in form, is investigated. Calculations are restricted to one dimension for simplicity in the derivations of the Fourier modes and the equations of motion. Both pinned and periodic boundary conditions are discussed. The representation of the Hamiltonian in terms of normal modes and the solution in terms of the equations of motion are derived. The Debye approximation is then introduced for three-dimensional systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信