使用多日通话记录识别重要地点

Peiyu Yang, T. Zhu, Xuejin Wan, Xuejiao Wang
{"title":"使用多日通话记录识别重要地点","authors":"Peiyu Yang, T. Zhu, Xuejin Wan, Xuejiao Wang","doi":"10.1109/ICTAI.2014.61","DOIUrl":null,"url":null,"abstract":"Call detail records (CDRs) containing mass position information allow us to reveal characteristics about the city dynamics and human behaviors, which are crucial for policy decisions such as urban planning and transportation engineering. Being able to identify the trajectory and significant places is of prime importance. In this paper, we aim to extract trajectory from anonymized call detail records and adopt two-step clustering to obtain significant places from multi-day data. We propose a new method for mining trajectory by identifying users' stop and move state based on location gradient, which can be applied to users with low communication frequency. We analyze the feature of real CDR data and propose novel methods for noise handling. Home Time and Work Time are extracted from statistics of users' mobility pattern to recognize their significant places including home and work of a single day. Utilizing the characteristic of cyclical mobility, we conduct a cluster analysis to identify users' significant places which are not limited to one home or one work based on multi-day data. We run four experiments to show the robustness and stability of our method. During both typical stop and move period, our method performs better than state-of-art method.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Identifying Significant Places Using Multi-day Call Detail Records\",\"authors\":\"Peiyu Yang, T. Zhu, Xuejin Wan, Xuejiao Wang\",\"doi\":\"10.1109/ICTAI.2014.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Call detail records (CDRs) containing mass position information allow us to reveal characteristics about the city dynamics and human behaviors, which are crucial for policy decisions such as urban planning and transportation engineering. Being able to identify the trajectory and significant places is of prime importance. In this paper, we aim to extract trajectory from anonymized call detail records and adopt two-step clustering to obtain significant places from multi-day data. We propose a new method for mining trajectory by identifying users' stop and move state based on location gradient, which can be applied to users with low communication frequency. We analyze the feature of real CDR data and propose novel methods for noise handling. Home Time and Work Time are extracted from statistics of users' mobility pattern to recognize their significant places including home and work of a single day. Utilizing the characteristic of cyclical mobility, we conduct a cluster analysis to identify users' significant places which are not limited to one home or one work based on multi-day data. We run four experiments to show the robustness and stability of our method. During both typical stop and move period, our method performs better than state-of-art method.\",\"PeriodicalId\":142794,\"journal\":{\"name\":\"2014 IEEE 26th International Conference on Tools with Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 26th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2014.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

呼叫细节记录(cdr)包含大量的位置信息,可以揭示城市动态和人类行为的特征,这对城市规划和交通工程等政策决策至关重要。能够识别轨迹和重要地点是最重要的。在本文中,我们的目标是从匿名呼叫细节记录中提取轨迹,并采用两步聚类方法从多日数据中获得重要位置。提出了一种基于位置梯度识别用户停止和移动状态的轨迹挖掘方法,该方法适用于通信频率较低的用户。分析了实际CDR数据的特点,提出了新的噪声处理方法。Home Time和Work Time从用户的移动模式统计中提取,识别用户一天中重要的地点,包括家和工作。利用周期性流动的特征,我们基于多天数据进行聚类分析,以识别用户不局限于一个家或一个工作的重要场所。通过四个实验验证了该方法的鲁棒性和稳定性。在典型的停止和移动期间,我们的方法比最先进的方法表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Significant Places Using Multi-day Call Detail Records
Call detail records (CDRs) containing mass position information allow us to reveal characteristics about the city dynamics and human behaviors, which are crucial for policy decisions such as urban planning and transportation engineering. Being able to identify the trajectory and significant places is of prime importance. In this paper, we aim to extract trajectory from anonymized call detail records and adopt two-step clustering to obtain significant places from multi-day data. We propose a new method for mining trajectory by identifying users' stop and move state based on location gradient, which can be applied to users with low communication frequency. We analyze the feature of real CDR data and propose novel methods for noise handling. Home Time and Work Time are extracted from statistics of users' mobility pattern to recognize their significant places including home and work of a single day. Utilizing the characteristic of cyclical mobility, we conduct a cluster analysis to identify users' significant places which are not limited to one home or one work based on multi-day data. We run four experiments to show the robustness and stability of our method. During both typical stop and move period, our method performs better than state-of-art method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信