Abraham Chan, A. Gujarati, K. Pattabiraman, S. Gopalakrishnan
{"title":"针对训练数据错误构建弹性集成","authors":"Abraham Chan, A. Gujarati, K. Pattabiraman, S. Gopalakrishnan","doi":"10.1109/dsn-w54100.2022.00020","DOIUrl":null,"url":null,"abstract":"In this talk, we describe our approach to construct resilient ML ensembles against training data faults [1]. First, we demonstrate how ensembles tolerate faulty training data. Then, we show how we could use analytical modelling to help ML practitioners build resilient ensembles without the need for resource intensive fault injection experiments.","PeriodicalId":349937,"journal":{"name":"2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Building Resilient Ensembles against Training Data Faults\",\"authors\":\"Abraham Chan, A. Gujarati, K. Pattabiraman, S. Gopalakrishnan\",\"doi\":\"10.1109/dsn-w54100.2022.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk, we describe our approach to construct resilient ML ensembles against training data faults [1]. First, we demonstrate how ensembles tolerate faulty training data. Then, we show how we could use analytical modelling to help ML practitioners build resilient ensembles without the need for resource intensive fault injection experiments.\",\"PeriodicalId\":349937,\"journal\":{\"name\":\"2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/dsn-w54100.2022.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/dsn-w54100.2022.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Building Resilient Ensembles against Training Data Faults
In this talk, we describe our approach to construct resilient ML ensembles against training data faults [1]. First, we demonstrate how ensembles tolerate faulty training data. Then, we show how we could use analytical modelling to help ML practitioners build resilient ensembles without the need for resource intensive fault injection experiments.