大尺度宇宙学模拟数据分析和可视化的统计超分辨率

Ko-Chih Wang, Jiayi Xu, J. Woodring, Han-Wei Shen
{"title":"大尺度宇宙学模拟数据分析和可视化的统计超分辨率","authors":"Ko-Chih Wang, Jiayi Xu, J. Woodring, Han-Wei Shen","doi":"10.1109/PacificVis.2019.00043","DOIUrl":null,"url":null,"abstract":"Cosmologists build simulations for the evolution of the universe using different initial parameters. By exploring the datasets from different simulation runs, cosmologists can understand the evolution of our universe and approach its initial conditions. A cosmological simulation nowadays can generate datasets on the order of petabytes. Moving datasets from the supercomputers to post data analysis machines is infeasible. We propose a novel approach called statistical super-resolution to tackle the big data problem for cosmological data analysis and visualization. It uses datasets from a few simulation runs to create a prior knowledge, which captures the relation between low-and high-resolution data. We apply in situ statistical down-sampling to datasets generated from simulation runs to minimize the requirements of I/O bandwidth and storage. High-resolution datasets are reconstructed from the statistical down-sampled data by using the prior knowledge for scientists to perform advanced data analysis and render high-quality visualizations.","PeriodicalId":208856,"journal":{"name":"2019 IEEE Pacific Visualization Symposium (PacificVis)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Statistical Super Resolution for Data Analysis and Visualization of Large Scale Cosmological Simulations\",\"authors\":\"Ko-Chih Wang, Jiayi Xu, J. Woodring, Han-Wei Shen\",\"doi\":\"10.1109/PacificVis.2019.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cosmologists build simulations for the evolution of the universe using different initial parameters. By exploring the datasets from different simulation runs, cosmologists can understand the evolution of our universe and approach its initial conditions. A cosmological simulation nowadays can generate datasets on the order of petabytes. Moving datasets from the supercomputers to post data analysis machines is infeasible. We propose a novel approach called statistical super-resolution to tackle the big data problem for cosmological data analysis and visualization. It uses datasets from a few simulation runs to create a prior knowledge, which captures the relation between low-and high-resolution data. We apply in situ statistical down-sampling to datasets generated from simulation runs to minimize the requirements of I/O bandwidth and storage. High-resolution datasets are reconstructed from the statistical down-sampled data by using the prior knowledge for scientists to perform advanced data analysis and render high-quality visualizations.\",\"PeriodicalId\":208856,\"journal\":{\"name\":\"2019 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis.2019.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis.2019.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

宇宙学家使用不同的初始参数来模拟宇宙的演化。通过探索来自不同模拟运行的数据集,宇宙学家可以了解我们宇宙的演化并接近它的初始条件。现在的宇宙学模拟可以产生pb量级的数据集。将数据集从超级计算机转移到后数据分析机器是不可行的。我们提出了一种称为统计超分辨率的新方法来解决宇宙学数据分析和可视化的大数据问题。它使用来自几次模拟运行的数据集来创建先验知识,从而捕获低分辨率和高分辨率数据之间的关系。我们对模拟运行生成的数据集应用原位统计下采样,以最小化对I/O带宽和存储的要求。利用先验知识从统计下采样数据重建高分辨率数据集,供科学家进行高级数据分析并呈现高质量的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Super Resolution for Data Analysis and Visualization of Large Scale Cosmological Simulations
Cosmologists build simulations for the evolution of the universe using different initial parameters. By exploring the datasets from different simulation runs, cosmologists can understand the evolution of our universe and approach its initial conditions. A cosmological simulation nowadays can generate datasets on the order of petabytes. Moving datasets from the supercomputers to post data analysis machines is infeasible. We propose a novel approach called statistical super-resolution to tackle the big data problem for cosmological data analysis and visualization. It uses datasets from a few simulation runs to create a prior knowledge, which captures the relation between low-and high-resolution data. We apply in situ statistical down-sampling to datasets generated from simulation runs to minimize the requirements of I/O bandwidth and storage. High-resolution datasets are reconstructed from the statistical down-sampled data by using the prior knowledge for scientists to perform advanced data analysis and render high-quality visualizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信