中心粒子群优化算法

Y. Xiaojing, Ji Qingju, Liu Xinke
{"title":"中心粒子群优化算法","authors":"Y. Xiaojing, Ji Qingju, Liu Xinke","doi":"10.1109/ITNEC.2019.8729510","DOIUrl":null,"url":null,"abstract":"The linear decreasing weight particle swarm optimization algorithm (LDWPSO) is mentioned in the concept of a center particle, and then puts forward center particle swarm optimization algorithm (PSO). The linear decreasing weight particle swarm optimization algorithm, unlike other general center particle, particle velocity center is not clear, and is always placed in the center of the particle swarm. In addition, the neural network training algorithm compared to particle swarm optimization algorithm and the linear decreasing weight particle swarm optimization algorithm, results show that: the performance is better than the linear optimization center particle swarm decreasing weight PSO algorithm. algorithm.","PeriodicalId":202966,"journal":{"name":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Center Particle Swarm Optimization Algorithm\",\"authors\":\"Y. Xiaojing, Ji Qingju, Liu Xinke\",\"doi\":\"10.1109/ITNEC.2019.8729510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linear decreasing weight particle swarm optimization algorithm (LDWPSO) is mentioned in the concept of a center particle, and then puts forward center particle swarm optimization algorithm (PSO). The linear decreasing weight particle swarm optimization algorithm, unlike other general center particle, particle velocity center is not clear, and is always placed in the center of the particle swarm. In addition, the neural network training algorithm compared to particle swarm optimization algorithm and the linear decreasing weight particle swarm optimization algorithm, results show that: the performance is better than the linear optimization center particle swarm decreasing weight PSO algorithm. algorithm.\",\"PeriodicalId\":202966,\"journal\":{\"name\":\"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNEC.2019.8729510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC.2019.8729510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在中心粒子概念的基础上,提出了线性减权粒子群优化算法(LDWPSO),并提出了中心粒子群优化算法(PSO)。线性减权粒子群优化算法与其他一般中心粒子不同,粒子速度中心不明确,且始终位于粒子群的中心。此外,将神经网络训练算法与粒子群优化算法和线性减权粒子群优化算法进行比较,结果表明:性能优于线性优化中心粒子群减权粒子群优化算法。算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Center Particle Swarm Optimization Algorithm
The linear decreasing weight particle swarm optimization algorithm (LDWPSO) is mentioned in the concept of a center particle, and then puts forward center particle swarm optimization algorithm (PSO). The linear decreasing weight particle swarm optimization algorithm, unlike other general center particle, particle velocity center is not clear, and is always placed in the center of the particle swarm. In addition, the neural network training algorithm compared to particle swarm optimization algorithm and the linear decreasing weight particle swarm optimization algorithm, results show that: the performance is better than the linear optimization center particle swarm decreasing weight PSO algorithm. algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信